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Abstract. This paper is a pedagogical introduction to avalanche models of solar

ares, including a comprehensive review of recent modeling e�orts and directions.
This class of 
are model is built on a recent paradigm in statistical physics, known as
self-organized criticality. The basic idea is that 
ares are the result of an \avalanche"
of small-scale magnetic reconnection events cascading through a highly stressed
coronal magnetic structure, driven to a critical state by random photospheric mo-
tions of its magnetic footpoints. Such models thus provide a natural and convenient
computational framework to examine Parker's hypothesis of coronal heating by
nano
ares.
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1. Introduction

1.1. Solar flares

Solar 
ares are the manifestation of a sudden, intense and spatially
concentrated release of energy in the corona, causing localized heating
up to temperatures of � 107K, as evidenced by the copious emission
of short-wavelength radiation. First observed serendipitously in white
light by R.C. Carrington and R. Hodgson in 1859 (see Carrington
1860)1, 
ares have captured the attention of solar physicists ever since.
However, it is only recently that space-borne X-ray and extreme ultra-
violet (EUV) imaging telescopes have revealed the astonishing range of
scales characterizing the 
aring phenomenon. The association of most
larger 
ares with magnetic active regions, and their very short onset
time, leave little doubt that magnetic reconnection is the mechanism
responsible for the dynamical release of magnetic energy (see Kulsrud
1998; Priest & Forbes 2000; and references therein).

Let f(E)dE be the fraction of 
ares releasing an amount of energy
between E and E + dE per unit time. A striking statistical feature

1 Hoyt & Schatten (1997, p. 26) mention in passing a report by one Stephen Gray
of Canterbury who, on 27 December 1705, saw a \
ash of lightning" near a sunspot;
clearly an earlier contender for the �rst observation of a solar 
are.

c
 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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Table I. Observational determinations of 
are power law indices for integrated
count rate/total energy release (�E), peak count rate/energy release (�P ), and
event duration (�T ). Values taken from (a) Crosby et al. (1993); (b) Bromund et
al. (1995); (c) Crosby et al. (1998); (d) Shimojo & Shibata (1999); (e) Aschwan-
den et al. (2000a); (f) Shimizu (1995); (g) Krucker & Benz (1998); (h) Parnell
& Jupp (2000); (i) Aschwanden et al. (2000b).

Data Instrument �E �P �T Ref.

HXR SMM/HXRBS 1:73 � 0:01 2:17 � 0:05 (a)

HXR ISEE 3/ICE 1:86 � 0:01 2:40 � 0:04 (b)

HXR WATCH/GRANAT 1:39� 0:02 1:59 � 0:05 1:09 � 0:03 (c)

SXR YOHKOH/SXT 1:7� 0:4 (d)

EUV TRACE 1:83 � 0:07 (e)

HXR SMM/HXRBS 1:53� 0:02 1:67 � 0:04 (a)

HXR ISEE 3/ICE 1:67� 0:02 1:92 � 0:02 (b)

SXR YOHKOH/SXT 1:5|1:6 (f)

EUV SOHO/EIT 2:3|2:6 (g)

EUV TRACE 2:02|2:56 (h)

EUV TRACE 1:79� 0:08 (i)

of the frequency distribution f(E) reconstructed form UV, EUV and
X-ray observations is its power law form (Drake 1971; Datlowe, Elcan
& Hudson 1974):

f(E) = f0E
��; � > 0 ; (1)

which currently holds for eight orders of magnitude in E. Similar power
laws are obtained for the peak energy 
ux (P ) and 
are duration (T )2.
Table I o�ers a compilation, representative rather than exhaustive,
of recent determinations of these power-law indices (see also Table 1
in Crosby et al. 1993 and Table 1 in Aschwanden et al. 1998). The
entries have been divided into two groups, the top one relating to
power laws involving directly measurable quantities (e.g., peak count
rates, total count rate, etc), and the bottom group to model-dependent
determinations (e.g., total energy release in erg).

Converting observed 
are X-ray or EUV 
uxes to volumetric energy
release is a very intricate exercise, involving assumptions regarding the

2 Recall that power-law distributions of the form f(x) / x�� do not have a well-
behaved average if � < 2; the average hxi is then always dominated by the largest
event measured since t = 0, rather than by the accumulating multitude of smaller
events. The more one samples the distribution, the larger hxi gets!
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geometrical shape of the 
aring region, physical conditions within the

aring volume, and the mechanism responsible for the emission of hard
radiation (see, e.g., Lee et al. 1993; Brown et al. 1998; Mitra-Kraev &
Benz 2001). Furthermore, at �nite spatial and temporal resolution, and
in the presence of a detection threshold, the observational de�nition of
what constitutes a 
are becomes a delicate matter (e.g., Aschwanden
et al. 2000a). These observational and data analysis issues account for
the signi�cantly di�erent values of the power law indices reported by
di�erent authors, even when working on the same dataset (cf. Table I;
see also the discussion in Aschwanden et al. 2000b).

While the mean 
aring rate varies by about a factor of twenty in
the course of the solar cycle, the power law indices remain essentially
constant (Dennis 1985; Lu & Hamilton 1991, Fig. 2; Crosby et al. 1993,
Fig. 4). Moreover, distributions constructed for distinct active regions
of various sizes show statistically undistinguishable power-law indices
(Wheatland 2000a). Finally, 
are-like X-ray emission from stars other
than the Sun also appears to be distributed as power-laws with similar
indices, independent of stellar parameters such as rotation, X-ray lu-
minosity, Rossby number, etc (see, e.g., Shakhovskaya 1989; Osten &
Brown 1999; Audard et al. 2000). All this suggests that the 
aring pro-
cess is intrinsic to coronal magnetic �elds, even though the 
aring rate
may be controlled by extrinsic factors, such as magnetic 
ux emergence
in the photosphere.

1.2. Coronal heating and Parker's conjecture

Ultimately, most of the magnetic energy liberated by the reconnection
process ends up heating the plasma surrounding the 
aring site. If
eq. (1) is taken at face value, the total energy released per unit time
by the ensemble of 
ares is simply

Etot =

Z Emax

Emin

f(E)E dE = f0

�
E2��

2� �

�Emax

Emin

; � 6= 2 ; (2)

(with Etot = f0 log(Emax=Emin) for � = 2). If � < 2 the largest 
ares
dominate the release of energy. Conversely, if � > 2 the smallest 
ares
are energetically dominant. On theoretical grounds, E.N. Parker has
conjectured that the latter situation holds: that these \nano
ares" are
responsible for coronal heating, and that \what we see as the X-ray
corona is simply the superposition of a very large number of nano
ares"
(Parker 1983, 1988, 1994; see also van Ballegooijen 1986).
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In a nutshell, Parker's idea runs as follows3. Stochastic photospheric

uid motions shu�e the footpoints of magnetic coronal loops. The
high electrical conductivity of the coronal gas implies that the mag-
netic �eld is frozen-in, so that the subsequent dynamical relaxation
within the loop results in a complex, tangled magnetic �eld, essentially
force-free everywhere except in numerous small electrical current sheets
which form spontaneously in highly-stressed regions (see Fig. 1.5 in
Parker 1994; for numerical simulations, Miki�c, Schnack & Van Hoven
1989; Longcope & Sudan 1994; and Galsgaard & Nordlund 1996). As
the current within these sheets is driven beyond some threshold, re-
connection sets in and releases magnetic energy, leading to localized
heating4. Parker (1988) estimates the energy of a typical nano
are
to be ' 1024 erg, and argues that they can indeed provide the '
107 erg cm�2 s�1 required to heat the corona (Withbroe & Noyes, 1977).

A voluminous body of literature supports the general notion of coro-
nal heating by episodic small-scale energy release events (e.g., Porter
et al. 1987; Sturrock et al. 1990; Krucker & Benz 2000). In the context
of eq. (2), Parker's conjecture evidently requires � > 2, and observa-
tions are now getting close to detecting 1024 erg events (Aschwanden et
al. 2000b). Current data analyses for total energy release yield a power-
law index �E in the range 1.5|2.6 (cf. Table I), which is too broad
a range to con�rm or refute Parker's conjecture. Clearly, a theoretical
calculation of �E would be a useful complement to extant observational
analyses. Self-organized criticality o�ers an avenue toward this goal.

1.3. Self-organized criticality

Following the seminal paper of Bak, Tang &Wiesenfeld (1987, hereafter
BTW; see also Bak, Tang & Wiesenfeld 1988; Kadano� et al. 1989), the
sandpile has become the exemplar of self-organized critical systems5.
Consider a circular table on which sand grains are dropped one at
a time, leading to the buildup of a more or less conical pile. The
sandpile steepens until its slope reaches a critical angle (the so-called

3 Parker (1983, x1) provides a nice historical review of the development of this
idea, starting in the mid-1960's.

4 Note that in this picture there exist a separation of timescales between energy
input to the system (minutes to hours, for photospheric 
uid motions on granular
scales), and energy release (seconds to minutes, for reconnection and subsequent
thermalization under coronal conditions). In other words, the coronal loop is slowly
driven by footpoint motions, a necessary property of the forthcoming lattice models.

5 That real piles of sand do not exhibit self-organized criticality (e.g., Nagel et
al. 1992; Jensen 1998, x3.2; Duran 2000, chap. 4) in no way diminishes the usefulness
of this gedanken-sandpile as a pedagogical device, especially since other granular
materials do behave in the manner to be described presently.
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angle of repose) beyond which further addition of sand rapidly leads
to avalanches sweeping sand down the pile, so that the slope remains
close to its critical value6. The sandpile is now in a statistically sta-
tionary state, with the average rate at which sands falls o� the table's
edge equal to the (constant) rate of sand grain addition. It is a very
dynamical stationary state, with relaxation occurring in the form of
episodic avalanches involving anywhere from a single grain to the whole
slope. In the language of statistical physics, the correlation length of
perturbations extends over the whole system: no matter how big the
sandpile, a \perturbation" (sand grain dropped near the top of the pile)
has a �nite probability of a�ecting, through the triggering of a large
avalanche, another sand grain located at the bottom of the pile; the
system is in a critical state.

The critical behavior of the sandpile at the angle of repose is remi-
niscent of what happens near a thermodynamical phase transition. Yet,
here no external controlling parameter (such as temperature) need be
�nely tuned to achieved criticality; the angle of repose is attained \nat-
urally" as a consequence of the slow addition of sand grains, and their
spatial redistribution by avalanches. The critical state is an attractor
of the dynamics. It is in that sense that the system is said to be in a
state of self-organized criticality (hereafter SOC).

A central aspect of SOC systems is that they are interaction-dominated,
i.e., their dynamical behavior is an emergent property of the relatively
simple interaction between many degrees of freedom. It does not mat-
ter exactly how any two sand grains interact, as long as they do so
locally and that their mechanical stability on the slope is subjected to
a threshold (e.g., friction between adjacent grains). Such a threshold
is in fact crucial, since it allows the existence of multiple metastable
states across which avalanches carry the system (for further discussion
see Jensen, 1998, chap. 6; Sornette 2000, chap. 15).

A universal feature of physical systems in a state of SOC is that
they have no preferred scale for the release of \energy". In the case of
the sandpile, for example, the spectrum f(n) of avalanche size (where
n is number of sand grain involved in an avalanche) is expected to be a
power law, f(n) / n��, with � � 1. The ubiquitous existence of such
power laws, often dubbed \1=f" or \
icker noise", in a wide range of
physical systems exhibiting episodic activity (earthquakes and seismic
noise emission, landslides and avalanches, cloud formation, magneto-
spheric substorms, interface growth, and forest �res, to name but a few)

6 C.A. Coulomb (of electrostatics fame) suggested in 1773 that the angle of repose
(�r) could be related to the coe�cient of static friction (�s) between sand grains
as �s = tan �r, a relation that has survived the test of time. For an outstanding
introduction to the physics of granular material, see Duran (2000).
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has led some authors to o�er SOC as the latest \theory of everything"
(see Bak 1996 for an spirited exposition; also Jensen 1998 and Tur-
cotte 1999). Caution is indeed in order here, as power-laws are merely
indicative of scale-invariant dynamics, and SOC is but one of many
ways to generate scale invariance (see, e.g., Newman & Sneppen 1996;
Sornette 2000, chap. 14; in the solar 
are context, Rosner & Vaiana
1978; Litvinenko 1996; Aschwanden et al. 1998; Wheatland & Glukhov
1998). Nonetheless, it is the observed power-law distribution of 
are
peak energy that led Lu & Hamilton (1991; hereafter LH91) and Lu et
al. (1993, hereafter LHMB) to suggest, in these two groundbreaking pa-
pers, that the solar coronal magnetic �eld is in a state of self-organized
criticality, and that 
ares are nothing more than the energy collectively
released by an avalanche of small reconnection events.

The remainder of this tutorial/review paper is organized as follows.
In Section 2 we introduce a basic lattice model and investigate in de-
tail the properties of the resulting SOC state. In Section 3 we revisit
various model ingredients, in the course of reviewing the literature on
modi�cations of the Lu & Hamilton model. In section 4 we examine
the various possible physical interpretations of the lattice model, and
review recent work addressing this important issue. We conclude in
Section 5 with a selective overview of what we think are interesting
areas for further research in SOC 
are models.

2. A basic lattice model

This section is a tutorial introduction to SOC avalanche models of solar

ares, using a basic formulation adapted from LHMB.

2.1. The lattice

Avalanche models of the type considered here are de�ned on a lattice,
i.e., a network of interconnected nodes. Figure 1 shows a simple regular
Cartesian lattice with nearest-neighbor connectivity; it has a spatial
dimension D = 2, linear size N = 6, and the total number of nodes
is equal to ND. Consider the node (j; k) = (4; 3), indicated by a black
solid dot on Figure 1. This node, like all other interior nodes, has four
nearest-neighbors. In a D-dimensional generalization of such a lattice,
each of the (N � 2)D interior node has 2D nearest-neighbors. We use a
vector index k to label each node of a D-dimensional lattice (k � j; k
for the 2D lattice of Fig. 1).

Although spatially discretized, the physical quantity Bk de�ned on
each lattice node is taken to be a continuous, scalar variable. In the
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Figure 1. A two-dimensional regular Cartesian lattice. A �eld quantity B is
de�ned at each node (j; k). Each interior node has four nearest-neighbors
(top/down/right/left, in darker gray).

context of solar 
ares it is common to associate Bk with some measure
of the magnetic �eld, so that B2

k
becomes a measure of magnetic energy.

The lattice mean �eld (hBi) and lattice energy (El) are then

hBi = 1

ND

X
k

Bk ; El =
X
k

B2
k
; (3)

where the sums over k stands for D nested sums, each from 1 to N .

2.2. The stability criterion

With B de�ned on the lattice, each node can be tested for stability,
as per some speci�ed criterion equivalent to declaring a sand grain
unstable if the local slope exceeds the angle of repose. In the original
BTW model as well as in a large fraction of subsequent numerical and
theoretical work on SOC, a node is deemed unstable if the correspond-
ing value of the �eld B exceeds some �xed threshold Zc. Such models
are known as \height-triggered". In the context of solar 
ares, most
models have followed LH91 in using a criterion based on a measure
(�B) of the �eld curvature, which for scalar B reads:

�B = Bk � 1

2D

2DX
nn=1

Bnn ; j�Bj > Zc ; (4)

where the sum runs over the 2D nearest neighbors (\nn") on the Carte-
sian D-dimensional lattice. While LH91 refer to �B as a \gradient",
the LHS of eq. (4) has in fact the form of a second-order centered
�nite di�erence expression for the D-dimensional Laplacian operator
(Galsgaard 1996). Accordingly, models based on eq. (4) are best referred
to as \curvature-triggered". While the numerical choice for Zc has no
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in
uence on the general behavior of the model, it must remain non-zero,
i.e., the presence of an instability threshold is crucial.

2.3. The redistribution rule

Once a node is deemed unstable, a procedure is needed to restore sta-
bility. This redistribution rule is the model's equivalent of having sand
grains topple down the sandpile. A natural procedure is to decrease B
at the unstable node, and increase it correspondingly at neighboring
nodes. Accordingly, we adopt the D-dimensional scalar equivalent of
the 3D vector rule introduced in LHMB:

Bk ! Bk � 2D

2D + 1
Zc ; Bnn ! Bnn +

1

2D + 1
Zc ; (5)

with nn = 1; :::; 2D, and any �eld redistributed to a boundary node
zeroed out (equivalent to letting sand grains fall o� the edge of the
table). Following the application of eq. (5) one or more of the nearest-
neighbor nodes might now exceed the instability threshold, in which
case the redistribution rule is to be applied to those nodes, and so on
until stability is everywhere restored. The sequence of redistribution
events is the model's realization of an avalanche.

The above redistribution rule is locally conservative in the lattice
variable B, i.e., Bk+

P
Bnn remains constant. However, a bit of algebra

soon reveals that the lattice energy decreases by an amount

er =
2D

2D + 1

�
2
j�Bj
Zc

� 1

�
Z2
c : (6)

The net energy released by the avalanche at each iteration is thus
Er =

P
er, the sum extending over all unstable nodes. If Zc is just

in�nitesimally exceeded at a single node, the energy released is

e0 =
2D

2D + 1
Z2
c : (7)

This represents the smallest \quantum" of energy that can be released
by the lattice, and thus makes a convenient energy unit. Redistribution
rules other than eq. (5) are of course possible, and it turns out that
the character of the SOC state is in
uenced by this choice. We defer
discussion of this important matter to x3.

2.4. The driving mechanism

The existence of a globally stationary state requires that the physical
quantity de�ned on the lattice be externally driven. The simplest way
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to achieve this is to add a succession of perturbations �B at some
randomly selected interior nodes. This is the equivalent of dropping
sand grains one at a time on the sandpile, and takes place only when
the lattice is not avalanching. In other words, driving occurs much
more slowly than avalanching, so that a separation of timescales exists
between the two mechanisms. Following LH91, we restrict ourselves for
the time being to uniform driving, i.e., �B is extracted from a sequence
of uniformly distributed random deviates:

�B 2 [�1; �2] ; h�Bi = 1

2
(�1 + �2) : (8)

The bounds �1; �2 must be chosen so the resulting distribution of per-
turbation �B has non-zero mean, h�Bi 6= 0, so that a net mean �eld
grows on the lattice. In addition, for a SOC state to be attained, the
driving must be weak:

j�Bj= hBi � 1 : (9)

For the uniform driver de�ned by eq. (8), h�Bi = hBi = 10�4 is a
safe upper bound (more on this in x3.3)7. Here a useful approximate
expression for hBi is

hBi ' Zc
6D

N2 ; (10)

which is accurate to a few percent for D = 2; 3 (and exact for D = 1).
The number of iterations needed to reach SOC from a Bk = 0 initial
condition is then � ND�hBi = h�Bi, which can get quite high for large
N and D since j�Bj= hBi � 1 is required8.

2.5. Algorithmic implementation

We have now de�ned all the ingredients required to set up a simple
simulation. A minimal pseudo-code for such a simulation is shown on
Fig. 2. It consists of a time-like iteration (i := 1; Ni) involving: (1) a
loop over all interior nodes, checking for local stability; (2) a second

7 LHMB introduced a more stringent condition, namely j�Bj=Zc � 1. This is a
necessary condition for SOC in height-triggered models, but for curvature-triggered
models (cf. eq. (4)) it leads to unnecessarily small �B's, especially on large lattices.
Equation (9) is also in better conceptual agreement with Parker's tangled �eld
picture, since the mean increment h�Bi is a �xed fraction of the mean �eld for
any lattice; in the initial, kinematic stage of braiding magnetic �eldlines around one
another, the tangential component induced by footpoint motions is expected to be
proportional to the mean (vertical) magnetic �eld (see Parker 1988, x5).

8 For �xed Zc; �1; �2, as in LHMB, the scaling is even worse: � N2D.
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Bk := 0; k = 1; N initial condition
Ck := 0; k = 1; N work array
s := 2D + 1 a convenient constant
for i := 1; Ni do time-like iteration loop

e := 0
for k := 2; N � 1 do �rst lattice loop

Zk := Bk � (1=2D)
P

Bnn compute curvature
if jZkj > Zc then node is unstable

Ck := Ck � (2D=s)Zc accumulate redistributions
Cnn := Cnn + (1=s)Zc (eqs. (5))
g := (2D=s)(2jZkj=Zc � 1)Z2

c nodal energy release, eq. (6)
e := e+ g accumulate energy release

endif

endfor

if e > 0 then an avalanche occurred
for k := 2; N � 1 do update lattice

Bk := Bk + Ck update �eld array
Ck := 0 zero work array

endfor

else no avalanche: drive �eld
k� :=irandom(D;N) pick random interior node
�B :=random(�1; �2) random increment, eq. (8)
Bk� := Bk� + �B update �eld at node

endif

endfor

Figure 2. Minimal pseudo-code for the SOC lattice model described in the text. The
outermost loop is the time-like iteration, D is the lattice dimension, N the linear
lattice size, and k is a D-dimensional integer array that uniquely labels each lattice
node. The work array C is used to accumulate the �eld increments/decrements
associated with the application of the redistribution rule to unstable nodes. Note
that the lattice loops span only interior nodes, so that Bk = 0 remains enforced at
all boundary nodes. The function irandom returns a D-dimensional integer array k�

with each element randomly selected from 2 to N � 1, thus identifying a randomly
selected interior node. The function random returns a number extracted from a
sequence of random deviates uniformly distributed in the interval [�1; �2].

lattice loop updating the Bk's; and (3) addition of a �eld increment
at some randomly selected lattice node k�, taking place only if all
nodes are found to be stable at the current iteration. Note how in
the �rst lattice loop a stability check is �rst made at each interior node
(k := 2; N�1), and if instability is detected the increments/decrements
in B associated with the redistribution rule de�ned by eq. (5) are
accumulated in the D-dimensional work array C. Only after this �rst
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sweep over the lattice is completed is the �eld synchronously updated
at all interior nodes. Applying the redistribution rules immediately
upon detecting an unstable node would introduce a spatial bias in the
avalanching process, according to the manner in which the lattice sweep
is carried out, clearly an undesirable break of isotropy.

2.6. Reaching the SOC state

All we need now is a good random number generator (get one, e.g.,
in Press et al. 1992, chap. 7), and we are ready to compute. Figure
3 shows the time series of energy release (panel A) and lattice energy
(panel B) resulting from running an algorithm similar9 to that listed on
Fig. 2 on a ND = 482 lattice for Ni = 1:6� 107 iterations, with model
parameters Zc = 5, �1 = �0:2, �2 = 0:8, and initial condition Bk = 0.
As B grows on the lattice under the in
uence of driving (see inset B1),
equivalent to the buildup of the sandpile, avalanches start to occur.
Their peak size increases gradually as the mean �eld and lattice energy
grow. After about 13 million iterations, the lattice energy abruptly
levels o�, a transition accompanied by an equally sudden increase in
the size of the largest avalanches, which now begin to span the whole
lattice. This is the much-awaited SOC state.

As can be seen on inset A1, avalanches are discrete events, well
separated in time and showing considerable temporal structure. From
the point of view of the mean-�eld (inset B1), the avalanches look
like very low amplitude \ripples" propagating along the mean �eld,
re
ecting the fact that avalanches release only a very small fraction of
the lattice energy (cf. Fig. 3B and inset B2).

2.7. Properties of the SOC state

The SOC state is stationary in the sense that over long timescales,
hBi and El neither grow nor decay. However, the way in which this
happens is somewhat peculiar. While the average driving rate is con-
stant, energy dissipation occurs in a bursty, intermittent manner, via
avalanches that are self-similar in space and time, i.e., they have no
characteristic spatial or temporal scale10. It is important to realize that

9 While mathematically correct and didactically preferable, the algorithm listed
on Fig. 2 is ine�cient in a number of ways, most notably by checking stability at
every interior node at each iteration, even if the previous iteration only saw the
addition of a �eld perturbation at a single random node k�!
10 More precisely, functional relationships such as power-laws are self-similar, in

that they remains invariant under a change of scale in either variable. For example,
introduce the scaling E0 = aE in eq. (1). It is easily veri�ed that the rescaling f 0 !
a�f recovers f 0 = f0E

��. Fractals are the geometrical expression of self-similarity.
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Figure 3. Time series of energy released in avalanches (panel A) and lattice energy
(panel B). The underlying model is de�ned on a ND = 482 lattice, with initial
condition Bk = 0 and all energies expressed in units of the minimal single-site energy
release e0 (eq. (7)). The inset A1 shows a small portion of the energy release time
series, and illustrates the fundamentally discrete nature of the energy release process,
occurring in bursts of all sizes, well separated in time. The peak energy release P ,
total energy E and duration T are readily extracted from such time series. The
inset B1 shows four 1D B-cuts along the middle of the lattice, extracted at epochs
indicated by the solid dots on the lattice energy curve on panel B, and illustrates the
growth of the \mean-�eld" towards SOC. Inset B2 is a closeup on the lattice energy
curve, showing how sharp drops (gray vertical line segments) correspond to peaks
in the energy release time series on panel A (also 
agged by gray line segments).
The SOC state sets in at the point where the lattice energy levels o� to a stationary
value. Note on panel A how the peak energy release (i.e., the size of avalanches)
increases abruptly once the SOC state is reached.
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large avalanches are essential to the existence of the SOC state. Because
the redistribution rule is conservative in B, and the driving is such that
h�Bi 6= 0, stationarity can only be maintained if B is zeroed out at
the boundaries at the same average rate at which it is added by the
driving process. The required transport of B to the boundaries is mostly
accomplished by large avalanches. In other words, large avalanches set
up the long-range spatial correlations that are responsible for estab-
lishing the proper balance between B-conservative internal avalanches
that only redistribute B, and B-dissipative avalanches reaching the
lattice boundaries. This delicate balance is central to the SOC state
(for further discussion, see Sornette 2000, chap. 15).

The solid-line histogram on Figure 4 is the frequency distribution of
the curvature measure, �B (see eq. (4)), normalized to its instability
threshold Zc. The distribution is constructed from a non-avalanching
iteration snapshot of a ND = 1282 lattice again with Zc = 5, and
excluding boundary nodes. Statistically undistinguishable distributions
are obtained for other lattice sizes, or other values of Zc. The �B
distribution is sharply peaked, with a mean at �B=Zc ' 0:59. This
corresponds to the overall curvature of the mean-�eld set up across the
lattice in the SOC state (see solid line on B1 inset of Figure 3). In
curvature-triggered models, it is thus essential to pin down the �eld at
the boundaries (see Galsgaard 1996 for more on boundary conditions),
and to have a driving mechanism with a non-zero mean. Interestingly,
�B distributions for 3D models (dotted histogram on Fig. 4) have the
same mean and similar overall shape, though they are statistically dis-
tinct from the 2D distributions. Driving slowly pushes the distribution
to the right, but avalanches counteract this tendency by pushing it back
to the left.

2.8. Characterization of avalanches

We now turn to the avalanches themselves, for which we de�ne �ve
quantities to characterize temporal and spatial behavior. The peak
energy release (P ) is the maximum energy released in a single iteration
in the course of an avalanche. The duration (T ), is the number of
iterations from the onset of the avalanche to the recovery of stability
across the whole lattice. The total energy E is the sum of all energy
released at all avalanching nodes in the course of the whole avalanche,
i.e., the gray area under the energy release curve on inset A1 of Fig. 3.
The remaining two measures refer to the geometrical properties of the
avalanches. Figure 5 shows a sequence of three snapshots of an ongoing
avalanche, computed on a ND = 1282 lattice (see also the animation on
the CD accompanying this Journal issue). The area (A, see Fig. 5) is the
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Figure 4. Distribution of local curvature �B (normalized to the critical threshold
Zc) for various lattices. The distributions are constructed from a non-avalanching
iteration in the SOC state. The vertical line segments are the means h�B=Zci.

set of all lattice nodes having gone unstable at least once in the course of
the avalanche. The resulting cluster of nodes is the vaguely Switzerland-
like white shape on Fig. 5D. A useful estimate of its characteristic linear
size R is given by its radius of gyration:

R2 =
1

M

MX
i=1

jri �R0j2 ; (11)

where the sum runs over the M nodes that are part of the cluster, and
R0 = (1=M)

P
ri is the cluster's center of mass. Physically, R is simply

the radius of the thin spherical shell (circular ring in 2D) having the
same \mass" and moment of inertia as the original cluster (see Stau�er
& Aharony 1994, x3.2).

These �ve quantities are related via well-de�ned, albeit statistical
power law relationships of the general form log(y) / 
xy log(x), where
x; y stand for any two of the �ve measures de�ned above (see LHMB,
Fig. 7)11. Figure 6A and B illustrates two such power law correlations

11 Since they de�ne power laws, the 
's are related to one another via relationships
of the form 
zx = 
zy � 
yx; also, 
yx = 1=
xy, and, in terms of the �-indices soon
to be introduced [eq. (12) below], 
xy = (�x � 1)=(�y � 1).
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Figure 5. Snapshots of an ongoing avalanche on a ND = 1282 lattice (panels A
through C). Panel B is extracted at the peak of the avalanche. The color scale en-
codes �B, with the bright checkerboard-patterned regions corresponding to unstable
nodes. Note how spatially fragmented the avalanche becomes once it gets underway.
The white cluster on Panel D shows the total area of the avalanche.

for which observational counterparts are available (Crosby et al. 1993;
Bromund et al. 1995). The exponent 
RA is the fractal dimension of the
avalanche. The time-integrated avalanche area (Fig. 5D) is a compact
object, so that 
RA = D to a percent or better. If however one uses the
spatial distribution of unstable nodes at the avalanche peak (Fig. 5B)
to de�ne A and R, then 
RA(P ) < D (see Table II further below).

2.9. Statistics of avalanches

Armed with the above de�nitions for E, P , T , A and R, we can run
the lattice models over a great many iterations, collect avalanche data,
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and build frequency distributions for these quantities. Figure 6C{E
shows the results of this exercise for E, P and T (histograms), for
a 107 iteration run on a ND = 323 lattice, in the course of which '
2:5 � 106 avalanches were recorded. All quantities exhibit well-de�ned
power laws spanning many orders of magnitude. The solid lines on
Fig. 6A{C are nonlinear least-squares �t of the general form

f(x) = f0x
��xG(x;xc) ; (12)

where as before x stands for E, P , etc, and G(x;xc) is a cuto� function
characterized by a length scale which is expected to scale with grid
size as yet another power law, xc / N�, implying �nite-size scaling
(Kadano� et al. 1989). LHMB used an exponential cuto� function
exp(�x=xc) and demonstrated �nite-size scaling (see their Fig. 3)12.
The �ts (solid lines on Fig. 6C|E) are carried out on log(f) and
for logarithmically constant bin width � log x = 0:2, each bin being
assigned a weight

p
N , under the assumption of Poisson statistics. The

�rst 2 bins are omitted from the �ts, because of the discrete nature of
the grid distorts the frequency distributions for the smaller avalanches.

The best-�t indices for a variety of lattice sizes and dimensions are
listed in the top section of Table II. These values are in good agreements
with the results listed in Table 1 of LHMB and Table II of Edney et
al. (1998), the slight remaining di�erences being due |we strongly
suspect| to the di�erent manners each group went about carrying
out the �ts. Note how (1) the indices converge reasonably rapidly as
lattice size is increased; (2) they do not di�er greatly between 2D and
3D lattices; (3) for either D = 2 or 3, the �-indices fall nicely within
the ranges set by observational inferences (cf. Table I), with the worst
discrepancy occurring for �T , which turns out to be the hardest to
infer reliably from observations. Our basic model is doing pretty well
at reproducing 
are statistics!

It is important to note that the long-range (spatial and temporal)
correlations characterizing the SOC state can lead to signi�cantly dif-
ferent power law indices if the runs are not carried out over su�ciently
many iterations. This is illustrated on Figure 7, for a sequence of
ND = 1282 runs. The power law indices are calculated for the �rst
5 � 105 iterations, 106 iterations, 1:5 � 106, and so on up to the full
length of the run, here 107 iterations. This procedure is repeated for
10 independent such runs, and the average power law indices are then

12 The existence of �nite size scaling is considered to be a sine qua non condition
for a system to be deemed critical. Systems sharing the same set of � and � indices
are said to belong to the same universality class. Here a logistic function gives a
better �t to the cuto�, but this matters little in the determination of the �-indices,
except on small lattices.
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Figure 6. Statistical properties of avalanches in a representative 107 iteration run
carried out on a ND = 323 lattice. Panels A and B shows the typical power law
cross-correlation between avalanche parameters, with power law least-squares �ts
carried out using only data above the diagonal dotted line, because of clustering of
small avalanche parameters due to the discrete nature of the lattice. Observationally
inferred indices are also listed. Panels C through E are normalized frequency distri-
butions for E, P , T , with least-square �ts (solid lines) to eq. (12). The vertical line
segments correspond to the length scale xc of the cuto� function G(x; xc). Panel F
shows the frequency distribution of waiting times �T , which is very well �t by an
exponential distribution.
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Table II. Power law indices for total energy (E), peak energy (P ), and duration
(T ) of avalanches in various lattice models, obtained by least-squares �ts of eq. (12)
to frequency distributions such as plotted on Fig. 6. The fractal dimension 
RA(P )
of the cluster of avalanching nodes at the peak of avalanches (as on Fig. 5B) is
also listed. The leftmost columns gives the length n (in units of 107 iterations) of
the sets of 10 independent time series used to build the avalanche statistics for
each lattice (see text).

ND �E �P �T 
RA(P ) n

322 1.429 � 0.001 1.741 � 0.005 1.711 � 0.002 1.610 � 0.022 0.5

642 1.417 � 0.002 1.725 � 0.007 1.715 � 0.003 1.600 � 0.020 1.0

1282 1.402 � 0.002 1.704 � 0.004 1.697 � 0.002 1.572 � 0.032 1.0

2562 1.408 � 0.001 1.692 � 0.005 1.700 � 0.004 1.552 � 0.021 1.5

5122 1.416 � 0.005 1.707 � 0.005 1.721 � 0.007 1.561 � 0.042 2.0

10242 1.421 � 0.004 1.731 � 0.005 1.723 � 0.008 1.581 � 0.038 2.0

163 1.451 � 0.003 1.855 � 0.008 1.650 � 0.009 1.779 � 0.025 1.0

243 1.464 � 0.003 1.875 � 0.007 1.705 � 0.003 1.768 � 0.034 1.0

323 1.464 � 0.003 1.890 � 0.006 1.737 � 0.006 1.799 � 0.028 1.0

483 1.487 � 0.007 1.915 � 0.009 1.793 � 0.008 1.782 � 0.023 1.5

643 1.491 � 0.006 1.923 � 0.007 1.787 � 0.007 1.793 � 0.031 2.0

1283 1.485 � 0.004 1.916 � 0.008 1.788 � 0.005 1.777 � 0.022 2.0

calculated and plotted (solid dots) as a function of run length, together
with the �1� r.m.s. deviation about the corresponding mean values.
The index values and error estimates listed in Table II were computed
in this manner. The larger the lattice, the longer the simulation must
be run to recover stable �-indices. Here for ND = 1282, a few 106

iterations are needed for the values of the indices to stabilize to within
�0:01, exemplifying the natural variability of the SOC state.

2.10. The waiting time distribution

Another interesting quantity is the waiting time (�T ), de�ned as the
number of iterations between the end of an avalanche to the onset of
the next. These show no correlation with the size of the next avalanche
(LHMB, Fig. 6; Georgoulis et al. 2001, x4.3), and neither do solar

ares (e.g. Crosby et al. 1998; Wheatland 1999). This is contrary to
the predictions of stochastically triggered energy loading models, such
as those originally proposed by Rosner & Vaiana (1978; see Lu 1995c;
but also Wheatland & Glukhov 1998). Essentially, avalanche models
lack such a correlation because the avalanches only release a small
fraction of the energy stored in the lattice, so that two large 
ares can
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Figure 7. Variations of the least-squares �t power law indices �E , �P and �T as a
function of the length of the time series used to construct the frequency distributions.
The solid dots are the mean of ten independent ND = 1282 runs, with the gray
vertical bars spanning the 1� r.m.s. deviation about the mean. The dashed horizontal
lines are included as a guide to the eye, and correspond to the mean of the three
rightmost data points.

occur closely spaced in time, without the need for an energy \reloading"
interlude.

The waiting times distribution (WTD) is plotted on Figure 6F, and
is very well �t by an exponential f(�t) = ��10 exp(��0�t), where
�0 is the mean 
aring rate over the complete time series (number of
avalanches over number of non-avalanching iterations); this behavior
indicates that the triggering mechanism is a Poisson process, which is
precisely what one would expect from the uniform driver of x2.4. (see
Wheatland et al. 1998). It also stands in marked contrast to obser-
vational inferences of the WTD, which are characterized by a power
law tail at large waiting times (Bo�eta et al. 1999; Wheatland 2000b;
Lepreti, Carbone & Veltri 2001). This apparent failure of our basic
model will be readily corrected in x3 below.

2.11. Initialization formula

We end this tutorial section with a useful practical tip. In the SOC
state, all memory of the initial condition is lost; since it is the properties
of the SOC state that are usually of interest, initializing the lattice with
Bk = 0 is far from optimal, in view of the subsequent lengthy driving
to SOC (at best / ND, as per x2.4). A more e�cient initialization
procedure can be designed upon recalling that the stability criterion
given by eq. (4) has the form of a second-order centered �nite di�erence
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representation of the D-dimensional Poisson equation:

r2B(x) = �2DZc
N2

; 1 � x � N ; (13)

A general D-dimensional solution to r2B = 1 on the unit hyper-cube
with boundary condition B = 0 is

B(x1; x2; :::; xD) =
1

2
x1(x1 � 1) + (1� �1;D)

4

�2

1X
n1=0

(
sin(�(2n1 + 1)x1)

(2n1 + 1)3

�
"
D�1Y
k=2

 
4

�

1X
nk=0

sin(�(2nk + 1)xk)

(2nk + 1)

!#
cosh(��(2xD � 1))

cosh(��)

)
; (14)

where

�2 = (n1 +
1

2
)2 + (n2 +

1

2
)2 + :::+ (nD�1 +

1

2
)2 ; (15)

and �1;D is the Kronecker delta. An exact solution to eq. (13) is then
readily constructed. Upon initializing the simulation with such a solu-
tion, SOC is rapidly attained13, following an initial avalanching phase
occurring primarily because the �B distribution is not a �-function in
the SOC state (see Fig. 4).

3. Variations on a theme

Evidently, many variations on the original LH91/LHMB model can be
constructed. The past decade has witnessed the publication of many
such variations and elaborations, to a review of which we now turn.

3.1. Scalar versus vector fields

LH91 and LHMB originally formulated their model in terms of a 3D
vector �eld Bk de�ned at each lattice node, each component being
independently driven as described in x2.4. This leads to a mean-�eld
con�guration having Bx = By = Bz everywhere, thus requiring a single

13 In practice it is optimal to initialize the simulation with the solution B� scaled
down by a numerical factor f corresponding to the mean of the �B distribution
appropriate to the lattice under study (f = 0:59 for D = 2 or 3 on a regular
Cartesian lattice, see Fig. 4). We reiterate that careful monitoring of the lattice
energy is still here the safest way to ascertain whether or not the SOC has been
reached.
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degree of freedom per node, e.g. jBj, to describe the 3D vector �eld
(Robinson 1994), which brings us back to the basic model of x2. The
numerical study carried out by Edney et al. (1998) has shown that for
a given D, the vector and scalar versions of this model belong to the
same universality class. With a few exceptions, most subsequent models
have adopted the less computationally demanding scalar version.

3.2. Stability criteria and redistribution rules

Experience with the height-triggered BTW model suggests that varia-
tions on the instability criterion and redistribution rule are the alter-
ations most likely to change the character of the SOC state. This is
found to carry over to the curvature-triggered model.

Zirker & Cleveland (1993) have studied a ND = 322 model involving
the eight nearest neighbors to de�ne the stability criterion. In addition,
their redistribution rule is both stochastic and anisotropic: if node k
is deemed unstable, they redistribute half of Bk to only two randomly
selected neighbors. The slowly-driven version of their Model A yields
�E = 1:45, similar to the basic model of x2. This suggests that both
versions of the model belong to the same universality class, as appears
to be the case within the original height-triggered modeling framework
of BTW (Chessa et al. 1999).

L. Vlahos and collaborators have studied a variety of D = 3 models
incorporating anisotropic stability thresholds and redistribution rules
(see Vlahos et al. 1995; Georgoulis & Vlahos 1996, 1998). In Vlahos et
al. (1995)'s Model B, the usual stability criterion [eq. (4)] is replaced
by six independent criteria, one per nearest neighbor:

�Bnn = Bk �Bnn ; j�Bnnj > Zc ; nn = 1; :::; 6 : (16)

Redistribution only occurs with the n� (� 6) nearest neighbor nodes
for which the stability criterion is exceeded:

Bk ! Bk � 6

7
Zc ; Bnn ! Bnn +

1

n�
6

7
Zc ; nn = 1; ::; n� (17)

[compare to eq. (5)]. Because stability is more easily violated with the
stability criterion given by eq. (16), and fewer nodes take part in the
redistribution, the model favors smaller avalanches, and consequently,
avalanche size-distributions are characterized by steeper power laws
than in the basic isotropic model of x2. Vlahos et al. (1995) report
�E ' 3:5, �P ' 3:6, and �T in the range 7|11 over a wide range of
lattice sizes.

Vlahos et al. also experimented with two models where a redistri-
bution event lowers the stability threshold Zc of its nearest-neighbor
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nodes, by an amount proportional to the local �eld gradient �Bnn

at the time of instability. This was found to have very little e�ect on
the resulting power-law indices. LHMB and MacKinnon & Macpherson
(1997) also reported introducing random spatial 
uctuations in Zc,
without signi�cant changes on the frequency distributions.

Georgoulis & Vlahos (1996, 1998) have presented results for a hybrid
model where the above stability criterion and redistribution rule are
used concurrently with the standard isotropic criterion and redistri-
bution rules of xx2.2 and 2.3. In this case the frequency distribution
of avalanche parameters are characterized by a double power-law (see
Fig. 1 in Georgoulis & Vlahos 1998). The steeper power law is con-
�ned to small events, and has indices similar to Model B of Vlahos
et al. (1995), while the power-laws for larger events are comparable to
those of the standard isotropic model.

MacKinnon & Macpherson (1997) have considered a variation on
the basic model which includes non-local e�ects. Whenever a node
becomes unstable, the usual redistribution rule is applied; in addition,
the Zc value at one or more randomly selected nodes elsewhere in
the lattice is halved at the next iteration. This can \spontaneously"
trigger a secondary avalanche. Having more than two non-local nodes
thus perturbed per redistribution event is found to induce signi�cant
departures from the original power-laws, and the SOC is never attained
if six nodes are perturbed. Non-local triggering of avalanches disturbs
the long-range correlations necessary to the SOC state.

3.3. Driving mechanism

Georgoulis & Vlahos (1996, 1998) have designed a series of models
where the �eld increments �B are extracted from a probability distri-
bution having the form of a declining power-law: p(�B) / �B��. They
show that the usual power law indices �E , �P and �T vary linearly
with the index � of the above probability distribution, thus o�ering an
attractive mechanism to tune (or induce temporal variability in) the
logarithmic slopes of the frequency distributions.

Norman et al. (2001) have considered the e�ects of a non-stationary
driving mechanism, by modulating the uniform driver of the basic
model by a random walk function �(t): �B 2 �(t)� [�1; �2]. The result-
ing statistical distributions of �B are characterized by extended tails
(see their Fig. 1), and lead to somewhat steeper frequency distributions
of avalanche size parameters than in the uniform-driving case. Norman
et al. also demonstrate that the average 
aring rate in their models
with non-uniform driving scales with the average energy input rate as
a remarkably tight power law with index ' 1:6 (see their Fig. 3).
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Figure 8. Waiting time distribution (thick histogram) for the non-stationary driving
model of Norman et al. (2001). Beyond t = 20 (iteration units), the WTD is well
�t by a power law with index 2:51 � 0:16, in agreement within error bars with the
observational value 2:4 � 0:1 inferred by Bo�eta et al. (1999), although somewhat
larger than the value 2:16 � 0:05 obtained by Wheatland (2000b). For comparison,
the exponential WTD of the basic model with uniform driving is also shown.

The use of a non-stationary driver by Norman et al. (2001) was moti-
vated by the analysis of Wheatland (2000b), suggesting that the power
law tail of the observed waiting time distribution could be understood
in terms of a piecewise-constant Poisson process. The WTDs obtained
by Norman et al. are indeed characterized by well-de�ned power law
tails at large waiting times, with the power law index in reasonable
agreement with observational inferences, as shown on Fig. 8.

What happens if the weak driving condition j�Bj= hBi � 1 is vio-
lated? Small increments are better at bringing a large portion of the
lattice close to the stability threshold, without exceeding it. Lattice-
spanning avalanches can only materialize if such large clusters of marginally
stable nodes have the opportunity to build up, something that becomes
increasingly di�cult as h�Bi becomes comparable to hBi. On the other
hand, increasing h�Bi also demands an increase in the frequency of
boundary-discharging avalanches, if a stationary state is to be main-
tained. As a result of these two con
icting tendencies, strong driving
ends up to favoring mid-size avalanches. As exempli�ed on Fig. 9 for
the peak energy P , the resulting frequency distributions of avalanche
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Figure 9. Frequency distribution of peak avalanche energy in ND = 1282, Zc = 5
models with moderate to strong driving, as measured by h�Bi = hBi (cf. x2.4).
Models with smaller values for this quantity yield f(P ) distributions statistically
indistinguishable from the h�Bi = hBi = 0:0005 model. Note that the latter has
h�Bi =Zc = 0:68, max(�B)=Zc = 2, yet reached a bona �de SOC state.

parameters do not show the well-de�ned power law so striking on
Fig. 6B. The lattice is still stationary, still avalanching, and still dissi-
pating energy, but it is no longer in a critical state. A similar situation
materializes when the �B's are extracted from a distribution with zero
mean (LHMB, Fig. 5).

3.4. Probabilistic models

MacKinnon, Macpherson & Vlahos (1996) have put forth a probabilistic
model that reduces the stability condition and redistribution rule to
the strict minimum. Their model is basically a 1-D forest-�re cellular
automaton, mathematically akin to directed percolation (see Stau�er
& Aharony 1994, chap. 6). Consider a 1D array of sites (nodes) that can
be in either one of three possible states: loaded, 
aring, or empty. The
evolution rules are quite simple: if a loaded site has a nearest neighbor
in a 
aring state then 
are at the next time step with probability p1;
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Figure 10. Probability p(N) of observing an event of size N in the 1D cellular
automaton model of MacKinnon et al. (1996). The probabilities of spontaneous and
induced 
aring are p0 and p1, respectively. The 
aring sites are the �'s, and the
loaded sites having failed to 
are (probability 1 � p1) the �'s. Time runs upward,
and sites having 
ares once already (�) remain empty at all subsequent steps.

else, 
are spontaneously with probability p0 (� p1). A loaded site can

are only once, after which it remains empty14.

The probability distribution of event size, de�ned here as the num-
ber of sites undergoing 
aring, is readily computed by considering the
various ways in which events of size N can unfold, as shown on Figure
10. For example, there are two distinct ways to produce an event of
size N = 2, each with probability p0p1(1 � p1)

2: �rst, a site must be
spontaneously activated (probability p0); only one of the two neighbors
must subsequently 
are [probability p1(1 � p1)], but then its neighbor
must fail to 
are at the subsequent iteration [probability (1 � p1)]. It
follows that the probability of producing an event of size N is

p(N) = Np0p
N�1
1 (1� p1)

2 : (18)

Assume now that the 
aring probability p1 is a uniformly distributed
random variable p1 2 [0; 1]. Integrating eq. (18) over p1 then leads to
a frequency distribution of event size: f(N) ' 2=N2 (for N � 1). A
power-law thus results naturally from this simple interaction process.
Branching theory suggests �E ' 1:5 for D > 1 (Litvinenko 1998), while
the 3D simulations of Macpherson & MacKinnon (1999) yield �E in the
range 1:76|2:87, depending on the assumed value of p1, and whether
and how fast empty sites are allowed to \reload". Note that this model
is critical, but does not self-organize itself to criticality. Insight gained
from studies of the forest �re model suggests that true SOC behavior
might materialize upon introducing a \reloading" probability p2 such
that p0 � p2 � 1, with p1 �< 1.

14 In the classical forest-�re model of Drossel & Schwabl (1992), an empty site can
\grow a tree" (reloading) with probability p2; a SOC state is attained in the double
limit p2 � 1 and p0 � p2. (Jensen 1998, x4.5; Sinha-Ray & Jensen 2000).
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3.5. Lattice structure

To the best of our knowledge all work to date on the curvature-triggered
model has been carried out on regular square (D = 2) or cubic (D = 3)
lattices. Although these lattices are computationally convenient, such
extreme regularity is hard to reconcile with Parker's picture of a com-
plexly tangled magnetic �eld. Given what is known from percolation
theory and lattice gas models, the global behavior on a triangular lattice
(for example) is likely to be described by numerically distinct power
law indices. Clearly, more work is needed in exploring the consequences
of alternate lattice geometries and connectivities.

4. Physical interpretation

The success of SOC models at reproducing many statistical properties
of solar 
ares has motivated a large body of work aimed at clarifying
their underlying physical basis. We now turn to this important issue.

4.1. What is Bk anyway?

The most straightforward physical association of the nodal �eld Bk is
to the magnetic �eld B, in which case eq. (3) for lattice energy and
eq. (6) for nodal energy release make sense. However, in general this
leads to r�B 6= 0. LHMB point out that associating instead Bk with a
vector potential A such that B = r�A not only solves (trivially) the
r�B problem15, but also o�ers a plausible interpretation of the driving
process. Adding an increment �A to the lattice amounts to locally
twisting the magnetic �eld. Another attractive feature of this Bk $ A

Ansatz is that it provides a physically meaningful interpretation for the
instability threshold. As noted previously, eq. (4) has the form of a �nite
di�erence expression for the Laplacian operator, so that the threshold
condition implies that \reconnection" sets in once the local electric
current (/ r2A for a suitably selected gauge) exceeds a threshold
value, which is physically appealing for reconnection-triggering plasma
instabilities. However,

P
B2
k
is then no longer an obvious measure of

lattice energy, which calls into question the whole idea of comparing
model time series to 
are observations.

Interpreting the threshold and redistribution rule in term of anoma-
lous di�usion (e.g., Isliker et al. 1998; also x4.2 below), Isliker et al. (2000,
15 Another trivial solution to the r � B 6= 0 problem is to consider a 2D lattice

where Bk is the strength of a magnetic �eld oriented perpendicular to the lattice
plane (e.g., Vassiliadis et al. 1998). Evidently, this \trick" is of limited applicability.
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2001) also argue that Bk should be identi�ed with a smooth vector
potential, but sampled at �nite spatial intervals corresponding to the
characteristic di�usive length. They go on to argue that the redistribu-
tion rule can be interpreted in terms of current dissipation, and show
that the frequency distributions of event sizes constructed using mea-
sures of current dissipation do not di�er signi�cantly from those arising
from the traditional Bk $ B interpretation (see Isliker et al. 2000,
Fig. 3).

Alternately, one can associate Bk with a dynamically signi�cant
characteristic of a macroscopic physical object, such as a magnetic 
ux
tube. Model B of Zirker & Cleveland (1993), as well as Chou (1999)'s
model, are of this type. Chou's ND = 502 model associates Bk with
the internal twist of 
ux tubes oriented perpendicular to the lattice
plane (see also Chou 2001). His stability criterion is de�ned in terms
of the twist \gradients" between pairs of neighboring nodes. Provided
the redistribution conserves the twist (i.e., Bk), the model behaves
in manner analogous to the basic model of x2, and yields comparable
power-law indices. In Zirker & Cleveland (1993)'s Model B, only a small
(20%) fraction of lattice node are occupied by 
ux tubes. Driving takes
place by randomly moving 
ux tube footpoints to neighboring empty
lattice nodes. In addition to twisting, the 
ux tubes can also wrap
about one another (\braiding"). The braiding-related events lead to a
power-law tail in the frequency distribution of energy release, but the
power law index is found to be rather sensitively dependent on some
model parameters.

Longcope and Noonan (2000) have constructed a ND = 302 model
where the dynamical elements are currents 
owing along separatrix
surfaces. The separatrix currents are driven by shearing in the lattice
plane, and the threshold and redistribution rules both involve these
currents. Tuning of a parameter results in power-law distributions of
event sizes, with indices once again close to the corresponding indices
for the basic 2D model at comparable N . This avalanche model is
critical, but again lacks self-organization.

4.2. The continuum limit

It was already noted (x2.2) that the stability criterion given by eq. (4)
has the functional form of a second-order centered �nite di�erence
expression for the D-dimensional Laplacian operator. This analogy can
be exploited to construct a PDE describing the avalanching process. We
�rst do so using the slightly (but, as we shall soon see, signi�cantly)
di�erent redistribution rule introduced in the original LH91 paper. The
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D = 1 scalar stability criterion and redistribution rule are:

�Bn
i = Bn

i �
1

2

X
Bn
i�1 ; (19)

Bn+1
i = Bn

i �
2

3
�Bn

i ; Bn+1
i�1 = Bn

i�1 +
1

3
�Bn

i ; (20)

where i and n are the spatial and temporal indices, respectively. Note
that �Bn+1

i = 0 immediately after the distribution, unlike the LHMB
rule adopted in our basic model of x2. In a region where contiguous
nodes are avalanching, each node is subjected to three distinct in-
crement/decrement operations, as per eq. (20). If nodal updates are
carried out synchronously, as done in the algorithm of Fig. 2, then the
�eld variable at node i is updated according to

Bn+1
i = Bn

i �
2

3
�Bn

i +
1

3
�Bn

i+1 +
1

3
�Bn

i�1 : (21)

Making judicious use of eq. (19), this can be rewritten as

Bn+1 �Bn = �2

3
[S][S]Bn ; (22)

where B � Bi, and the elements of the matrix [S] are given by

[S]i;j = �i;j � 1

2
�i;j+1 � 1

2
�i;j�1 ; (23)

where �i;j is the Kronecker delta (see Liu et al. 2001). Clearly, [S]
has the form of a second-order centered �nite di�erence stencil for
(�1=2)@2=@x2. Equation (22) is thus equivalent to the spatial dis-
cretization of the fourth-order hyperdi�usion equation:

Bt = ��Bxxxx ; (24)

with second-order centered di�erencing in space (grid spacing �x = 1),
forward di�erencing in time (time step �t = 1), and with a hyperdif-
fusion coe�cient � = 1=6 (subscripts \x" and \t" are used hereafter to
indicate partial derivatives with respect to space and time).

Some authors (Galsgaard 1996; Macpherson, personal communica-
tion) have reported being unable to reproduce the LH91 results using
their original redistribution rule. Our own numerical model, based on
the algorithm given on Fig. 2, eventually diverges if the LH91 rule
is used, suggesting some sort of numerical instability. A standard von
Neumann stability analysis (e.g., Press et al. 1992, x19.1) can be applied
to eq. (24), and yields an ampli�cation factor

p = 1� 2

3

�t

�x4
(cos k�x� 1)2 (25)
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where the perturbation wavenumber k is real and non-negative. For
�x = 1, �t = 1, max jpj = 5=3 > 1 (for k such that cos k = �1).
Therefore, numerical integration of the di�erence equation (22) is un-
conditionally unstable. If instead only a fraction f�Bi (0 < f < 1) is
redistributed in eqs. (20), then the hyperdi�usion coe�cient in equation
(24) becomes � = f=6. It is easy to show that if f < 3=4, max jpj < 18k.
Numerical experiments readily con�rm this stability analysis.

The derivation leading to eq. (22) does not carry through if the
LHMB redistribution rule is used, but evidently that rule is equiva-
lent to introducing a multiplying factor Zc=j�Bij (< 1, since nodes
are avalanching) to the redistributed quantity, and thus also to the
hyperdi�usion coe�cient associated with the LH91 rule. Although f
now varies from node to node, this still suggests enhanced numerical
stability, and indeed the use of the LHMB rule is found (empirically)
to lead to a numerically stable model16.

Equation (24) holds only in avalanching regions, but it should be
nonetheless clear that in the continuum limit of �x! 0 and �t! 0,
the lattice model of LH91 can be expressed as a randomly driven fourth
order hyper-di�usive system with anomalous di�usion coe�cient:

Bt = �(�(Bxx)Bxxx)x + f(x; t) (26)

(written now in conservative form) where f is a low frequency random
forcing, and

�(Bxx) =

�
0 if jBxxj < Zc
1=6 if jBxxj > Zc

(27)

This conclusion actually carries over to the basic lattice model of x2,
which uses instead the redistribution rule of LHMB. This is readily
veri�ed upon computing the power spectrum density of B in the SOC
state, which yields a slope of �4, precisely what one would expect from
a randomly driven fourth order di�usive system (see Liu et al. 2001).

The avalanche equation possesses self-similar and traveling-wave
solutions, just as the Kuramoto-Sivashinsky (Chang 1986), the Cahn-
Hilliard (Elliott & French 1987), and the thin-�lm (Boatto, Kadano�
& Olla 1993), equations. These related higher-order di�usion equations
have received signi�cant attention in the literature (Smyth & Hill 1988).
Consider, for example, the curvature triggered hyper-di�usion equation

Bt = �(jBxxj�Bxxx)x : (28)

16 The derivation of eq. (22) and subsequent stability analysis are pre-empted on
synchronous update of all avalanching nodes. H. Isliker (personal communication)
has indicated to us that a stable model based on the LH91 redistribution rule can
be constructed by forsaking strict synchronicity in nodal updating.
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This avalanche equation admits a self-similar solution of the form

B(x; t) = B0 t
�� b(xt��) ; (29)

with � = 1=(4+3�). In terms of the variable � / xt��, one immediately
deduces the nonlinear governing ODE,

jb��j�b��� = ��b ; (30)

for b(�) an even function about � = 0, whose form is set by the adopted
value of �. The linear case (� = 0) admits solutions in terms of gener-
alized hypergeometric functions. The avalanche front moves according
to the power-law, y / t1=4, as dictated by the form of the self-similar
variable. For the general non-linear situation (� 6= 0), the motion of
the front is slightly retarded, since y / t1=(4+3�).

We note �nally that avalanching behavior is not restricted to fourth-
order di�usion equations. Lu (1995b) has studied numerically the be-
havior of the second order 1D avalanche equation

Bt = (�(Bx)Bx)x + f(x) ; (31)

with steady driving and �(Bx) described by a time-dependent threshold
equation. He has shown that this system does produce self-similar en-
ergy dissipation via avalanches with sizes distributed as power laws. In
the continuum limit as with the lattice model, a self-stabilizing thresh-
old instability causing local transport emerges as the key ingredient.
The exact form of the di�usion coe�cient (� stability condition) and
di�usion operator (� redistribution rule) is of secondary importance.

4.3. SOC-like behavior in MHD turbulence

It has now been amply demonstrated that energy dissipation in MHD
turbulence occurs in a manner that is strongly intermittent, both spa-
tially and temporally (e.g., Longcope & Sudan 1994; Einaudi et al. 1996;
Galsgaard & Nordlund 1996; Dmitruk & G�omez 1997; Galtier & Pou-
quet 1998; Georgoulis et al. 1998; Einaudi & Velli 1999; Galtier 1999;
and references therein). Such simulations are often characterized by a
separation of timescales between driving and dissipation, and analysis
of the time series of global energy dissipation yields 
are-like time series,
with the size distribution of dissipative events taking the form of a more
or less well-de�ned power law. These features are attractively SOC-like.
Yet, recall that the de�ning feature of SOC is interaction-dominated
threshold dynamics. Can the large dissipative events measured in MHD
simulations be interpreted as the superposition of numerous smaller
events triggering one another? Or, do the observed power-law distri-
butions of event sizes simply re
ect the \natural" size spectrum of

socrev.final.tex; 15/08/2001; 15:08; p.30



Avalanche models for solar 
ares 31

the current sheets, each building up and dissipating independently?
Expressed di�erently, does MHD turbulence exhibit avalanching be-
havior, or just self-similarity in the buildup of dissipative structures?
Such questions are at the heart of the SOC interpretation of MHD
turbulence, and at this writing remain unanswered.

5. Concluding comments

We close this tutorial/review paper with a selective, brief overview of
remaining problems or challenges, as well as areas where, in our opinion,
the full potential of avalanche models has not yet been exhausted.

5.1. Flares and coronal heating

Perhaps the most impressive success of the avalanche model for solar

ares remains its ability to reproduce the power-law form of the inferred
frequency distributions of 
are parameters, and to yield logarithmic
slopes that are in good agreement with observations. The basic model
of x2 does so without any �ne tuning of model parameters, and is robust
with respect to most aspects of the model's formulation.

This good agreement does not augur well for coronal heating, how-
ever. Recall from x1.2 that Parker's nano
are conjecture requires �E >
2, which is not supported by most avalanche models, which (in prin-
ciple) yield the true frequency distribution of energy release size. The
situation is troublesome, because it is not easy to modify the model to
get �E > 2 and, if one succeeds, the agreement with 
are observations
might well vanish. To the best of our knowledge the only extant con-
struct that manages to satisfy both constraints is the \double power
law" hybrid model put forth by Georgoulis & Vlahos (1996, 1998; also
x3.2 herein). This works provided that the steeper power law still lies
below current detection thresholds. The recent determinations of 
ares
energies down to about 1024 erg (Aschwanden et al. 2000b), with no
sign of a signi�cant steepening of the frequency distribution, renders
this position increasingly untenable (but see Mercier & Trottet 1997).

5.2. Flare prediction

The conjectured SOC state of the solar corona has some disturbing
consequences for 
are forecasting, a topic of great interest among space
weather a�cionados. In the SOC state, whether large or small, an
avalanche begins with one node exceeding the stability threshold fol-
lowing an external perturbation. It is certainly the case that \kicking"
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a lattice already in its SOC state with a large perturbation (mimick-
ing magnetic 
ux emergence in an existing active region, say), is very
likely to trigger a large avalanche. On the other hand, an equally large
avalanche can be triggered by a very small, unobservable perturbation.
The former avalanche/
are can perhaps be predicted by identifying
suitable precursors of 
ux emergence; the latter typi�es a class of large

ares that is quite simply unpredictable. This lack of predictability can
be ascertained quantitatively by computing the Hurst exponent (H)
of the model's energy release time series (e.g., Hastings & Sugihara
1993, chap. 4; Steeb 1999, x2.4) compressed to the driving timescale
(i.e., avalanches are replaced by their peak energy release at a single
iteration; see LHMB, Fig. 2). This results in H ' 0:5, implying no
\memory", and thus no predictability17

5.3. The fractal nature of avalanches

If solar 
ares are indeed the manifestation of reconnection avalanches in
a tangled coronal magnetic �eld, then the analysis of 
are observations
must come to grips with the fractal nature of avalanches in the SOC
state. Speci�cally, the relationship between the volumetric energy re-
lease (E) and (observed) projected area (A) of X-Ray or EUV emission
is neither E / A (cylinder model with constant column depth; see also
Mitra-Kraev & Benz 2001), nor E / A3=2 (loop model; cf. Aschwanden
et al. 2000b, x2.1). The situation is further complicated by the fact that
the avalanche area (Fig. 5D), which would presumably be the structure
\seen" (in projection) by observations with exposure times comparable
to the avalanche lifetime, has a fractal index signi�cantly di�erent from
that of the avalanche at its peak (Fig. 5B), which is presumably what
observations at high temporal resolution would \see". Some of these
issues are explored in McIntosh et al. (2001), where it is argued that
such observations o�er a unique observational test of SOC models for
solar 
ares (see also the animations on the accompanying CD).

5.4. The solar corona and self-organized criticality

Is the solar coronal magnetic �eld in a self-organized critical state?
We concur with Lu (1995a) that the coronal �eld does meet the re-
quirements for the appearance of SOC: self-stabilizing local threshold

17 Unpublished Hurst exponent calculations carried out by J. Norman during his
summer 2000 stay at HAO as an undergraduate research intern. Note however that
Lepreti et al. (2001) have suggested that the solar 
are WTD distribution is best
�t with a Levy distribution, which would imply some level of memory (see Sornette
2000, x4.1.4). The memory question clearly warrants further investigation.
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instability; open boundaries; and separation of timescales between driv-
ing and avalanching. Moreover, Parker's picture of a complexly tangled
coronal magnetic �eld driven to episodic localized reconnection by slow,
random photospheric footpoint motions provides a sound physical un-
derpinning to what is otherwise a model containing embarrassingly
little of the MHD physics relied upon by the overwhelming majority of
extant 
are models. Naturally, this does not necessarily imply that the
solar corona is in fact in a SOC state. We do hope at least to have con-
vinced our readers that if it is, the consequences for our understanding
of 
ares and coronal heating are many and far reaching.
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