
THE ASTROPHYSICAL JOURNAL, 533 :1043È1052, 2000 April 20
1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

ON THE INFERENCE OF DIFFERENTIAL EMISSION MEASURES USING DIAGNOSTIC LINE RATIOS

SCOTT W. MCINTOSH1
High Altitude Observatory, National Center for Atmospheric Research,2 P.O. Box 3000, Boulder, CO 80307-3000 ; mscott=hao.ucar.edu

Received 1999 September 8 ; accepted 1999 December 10

ABSTRACT
Spectroscopic diagnosis of hot optically thin plasmas can be used to infer valuable information about

the temperature structure of the emitting plasma volume, through the emission measure di†erential
(DEM) in However, the uncertainties in atomic parameters (required to model the plasmaT

e
, DEM(T

e
).

emission) make such inferences intractable. We demonstrate that it is possible, and relatively straightfor-
ward, to implement a formalism and infer in a way such that atomic uncertainties are treatedDEM(T

e
)

explicitly. Indeed, we show that a hybrid line-ratio/emission-measure method is robust when ““ standard ÏÏ
inversion methods will fail to produce consistent results.
Subject headings : Sun: general È Sun: UV radiation

1. INTRODUCTION

The determination of plasma diagnostic distributions,
di†erential emission measures (DEMs), from the observed
photons is critical if we are to understand, and assess, the
state of the outer solar atmosphere. The data of unprece-
dented quality provided by the instruments of the NASA/
ESA Solar and Heliospheric Observatory (SOHO) mission
(Fleck, Domingo, & Poland 1995) contain information
which can, in principle, allow us to unlock the mysteries of
the UV/EUV Sun.

Methods have been in place for decades (see, e.g., Menzel,
Aller, & Hebb 1941) that allow us to ascertain estimates of
the diagnostic parameters of the solar atmosphere, i.e., the
electron density and temperature One such method isn

e
t
e
.

the line-ratio approach (see, e.g., Gabriel & Jordan 1972, p.
210 ; Almleaky, Brown, & Sweet 1989 ; Brown et al. 1991 ;
Mason & Monsignori-Fossi 1994 and references therein).
This makes use of atomic/ionic structure to predict the ratio
of two line emissivities as a function of or both. Then

e
, T

e
,

fact is that this approach yields only a single (often
ambiguous) mean measurement, which renders such diag-
nostics to be of limited use when attempting to analyze the
nonequilibrium, inhomogeneous nature of the solar atmo-
sphere.

Another method utilizes the same atomic physics as
above, although in a slightly di†erent integral formalism, to
characterize the plasma as (or both) distributionsn

e
, T

e(Brown et al. 1991). This is the more general DEM
approach Ðrst discussed by Pottasch (1964), but read-
dressed in the work of Je†eries, Orrall, & Zirker (1972a,
1972b). This approach has a basis depending on a set of
rigid assumptions, conÐning the plasma to a speciÐc,
perhaps unrealistic (e.g., Judge et al. 1995), regime. As if this
rigidity was not enough, the diagnostic distributions must
be inferred numerically as the solutions to ill-posed Fred-
holm equations of the Ðrst kind (Craig & Brown 1976). Such
inversions are precarious, that is, they are unstable not only
to observational errors (Craig & Brown 1986), but have
recently been shown to depend on the accuracy to which we
can describe the atomic processes likely to be present
(Judge, Hubeny, & Brown 1997). The latter source of error
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2 The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

makes the inverse problem less tractable and deÐnitely
requires that such atomic errors are addressed and
accounted for appropriately, if any inference of DEMs is to
be made from observational data. In this paper we propose
a method for doing exactly this.

Recently, in McIntosh, Brown, & Judge (1998), it was
shown that both the line-ratio and DEM approaches are, at
least mathematically, equivalent. It was also alluded to
there that a method bridging the gap and utilizing the best
parts of both methods, while alleviating their shortcomings,
was a distinct possibility. In this paper we present a method
of ““ ratio inversion ÏÏ with this purpose in mind.

In ° 2 we discuss the mathematical and physical implica-
tions of a ““ ratio inversion ÏÏ technique (RIT). In ° 3 we
demonstrate the e†ectiveness of the approach on a bench-
mark work in the literature, that of Raymond & Doyle
(1981), using data from the Harvard S-055 EUV spectro-
heliometer (Reeves, Huber, & Timothy 1977) tabulated by
Vernazza & Reeves (1978). We demonstrate how well the
atomic irregularities discussed by Judge et al. (1997, private
communication) are accounted for by our formalism.

2. FOUNDATIONS

The total power radiated by a particular spectral line,P
ilabeled i, emitted by an optically thin volume V of plasma is

given by

P
i
\
PPP

V
hl

i
A

i
n
u(i) dV ergs~1 , (1)

where h is PlanckÏs constant, is the frequency of the line,l
i(s~1) is the Einstein A-coefficient, and (cm~3) is theA

i
n
u(i)population density of the upper level u(i). Following stan-

dard practice, we deÐne a line emission coefficient,
normalized to the electron density squaredK

i
[n

e
(r), T

e
(r)],

as

K
i
[n

e
(r), T

e
(r)]\ hl

i
4n

n
u(i)Ai
n
e
2 ergs cm3 sr~1 s~1 , (2)

or as

K
i
(n

e
, T

e
) \ hl

i
A

i
4n

n
u(i)

nion n
e

nion
nel

nel
nH

nH
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e

ergs cm3 sr~1 s~1 ,

(3)
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where and are the relativen
u(i)/nion, nion/nel, nel/nH, nH/nepopulation of the upper atomic level of the line, the ionic

abundance, elemental abundance, and relative abundance
of H to electrons (having a value of 0.8 for the regions of the
solar atmosphere considered in this paper), respectively. In
principle the Ðrst form (eq. [2]) is adequate, but it is instruc-
tive to introduce the latter (eq. [3]) to facilitate later dis-
cussion.

Using this quantity and realizing that our unit of mea-
surement is the line intensity for projected(I

i
\ P

i
/(4nS)

emitting area S), we see that

I
l
\
P
ne

P
Te

K
i
(n

e
, T

e
)k

] (n
e
, T

e
)dn

e
dT

e
ergs cm~2 sr~1 s~1 , (4)

where is the bivariate di†erential emission measurek(n
e
, T

e
)

of Judge et al. (1997) [deÐned as by Brown et al.((n
e
, T

e
)

(1991) with In essence is((n
e
, T

e
)\ 4nSk(n

e
, T

e
)]. k(n

e
, T

e
)

a positive deÐnite quantity measuring the volume distribu-
tion of emitting plasma di†erentially as a function of andn

ewithin the plasma, weighted by From Judge et al.T
e

n
e
2.

(1997, private communication), the form of isk(n
e
, T

e
)

k(n
e
, T

e
)\
Q
Lne,Te

n
e
2

o$n
e
o o$T

e
o sin h

ne,Te

dL
ne,Te

cm~5 , (5)

where (assumed to be nonzero) is the local angleh
ne,Tebetween vectors and normal to surfaces of$n

e
$T

e
S
ne
, S

Teconstant electron density and temperature, respectively, and
is the line where the constant surfaces meet. TheL

ne,Te

interested reader is referred to Figure 1 in Brown et al.
(1991) for a perspective of the plasma geometry.

At this point we integrate out the electron density depen-
dence (to leave the integral as a function of only,T

eassuming that we are operating in some Ðxed n
e
\ n0regime), thus equation (4) becomes

I
i
\
P
Te

K
i
(T

e
)m(T

e
)dT

e
ergs cm~2 sr~1 s~1 , (6)

where

m(T
e
) \
P
ne
k(n

e
, T

e
)dn

e
cm~5 K~1 . (7)

We have now introduced the Fredholm equation of the Ðrst
kind describing the emission measure di†erential in T

e
,

or (units cm~5K~1) as it will be designatedDEM(T
e
), m(T

e
),

in symbolic form. Further, to conform with much of the
literature, we transform integration variables to t

e
\

such that equation (6) becomeslog10 T
e

I
i
\
P
te
K

i
(t
e
)m(t

e
)dt

e
, (8)

where now has units cm~5.m(t
e
)

The DEM approach is usually posed as an inverse
problem requiring the solution of ill-posed3 integral equa-
tions like that of equation (8), of which the e†ects of numeri-

3 The degree of ill-posedness is determined by the number of solutions
that will adequately Ðt the data.

FIG. 1.ÈThe global results of the RIT using a maximum entropy smoothing functional and the set of standard line emission coefficients (kernels). On
plotting smoothing parameter j vs. the roughness of the solution, given above as D2 (see eq. [16]) vs. s2 calculated through eq. (15), we are able to identify the
value of j that optimizes the recovery of with a reasonably smooth function. This value is determined by Ðnding the pointRobs (jopt) ¿\min (j ]D2] s2)1@2
indicated by the Ðlled circle on the upper curve closest to the origin 0. In this case the optimal value of j has an associated s2 of 3.917.(jopt \ 6)
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cal instability and nonuniqueness are well documented (see,
e.g., Craig & Brown 1976).

The form of a typical (discretized over M points) inte-t
egral equation once cast as a linear system of equations (see

Craig & Brown 1986) is

g \Kf , (9)

where g, the N-element vector of observed data (line inten-
sities in this case), and K, the ““ kernel ÏÏ (N ] M) matrix
(containing the atomic parameters, each row containing the
emission coefficient of the corresponding element of g) are
known, and we have to recover f, the unknown ““ source ÏÏ
function, or DEM as it is here. As stated above, the possi-
bility that errors are of magnitude º15% (Judge et al. 1997)
on both sides of equation (9) make this a particularly intrac-
table problem.

The di†erential emission measure is not the only means
to obtain information on the plasma. The ““ line-ratio ÏÏ
method can be used to evaluate a single estimate of the
emitting plasma volumeÏs temperature. So, consider now
two such lines i, j, where the ratio of the two line intensities
is

R
ij
\ I

i
I
j
\ /

te
K

i
(t
e
)m(t

e
)dt

e
/
te

K
j
(t
e
)m(t

e
)dt

e
, (10)

and if the emission coefficients are di†erent, then the ratio
depends on If the plasma is homogeneous in tem-t

e
.

perature, i.e., isothermal, we could express the asm(t
e
)

such that, on substituting this expres-m(t
e
)\ m0 d(t

e
[ St

e
T)

sion into equation (10) and integrating over the whole tem-
perature domain, we have

R
ij
\ m0K

i
(St

e
T)

m0K
j
(St

e
T)

, (11)

and for the particular line pair i, j we may express inR
ijterms of the ““ mean ÏÏ spectroscopic temperature, St

e
T
ij
,

R
ij
\ K

i
(St

e
T)

K
j
(St

e
T)

. (12)

From equation (12) it is trivial4 to evaluate the ““ mean ÏÏ
spectroscopic temperature of the emitting plasma, St

e
T
ij
,

essentially the temperature of an isothermal plasma that
would produce the identical intensity ratio. It should be
clear that di†erent ratios will produce di†erent values of

Distributions can be built, but in a di†erent fashionSt
e
T.

than the DEM.
The DEM inversion intractability can be simply circum-

vented if the dominant errors in the line emission coeffi-
cients are systematic, as suggested by Judge et al. (1997). In
fact, the line-ratio method described above can explicitly
deal with some of the systematic errors, since the ratio of
two quantities with the same systematic error (say, two lines
from the same ionic species or even isoelectronic sequence)
will be largely Ðltered out by taking the ratio of those
terms.5 The question, then, is can we formulate a line-ratioÈ
like methodology to infer m(T

e
) ?

4 Assuming a monotonic dependence of onR
ij

t
e
.

5 With a constant DEM the e†ect of such systematic errors can be
Ðltered out completely. When the DEM is not constant, the true situation,
the di†erences in variability of the functions involved (DEM and line
emissivities) will be critical in helping to determine the cancellation of the
errors.

2.1. T he Ratio Inversion Technique (RIT )
The nonlinearity required to solve equation (10) and the

need to incorporate a measure of error in the atomic param-
eters used requires that we seek a new method to solve for

using a line-ratio formalism. Consider, then, the set ofm(t
e
)

N line ratios We have for line pairs i, j (andMR
ij
N. iD j),

with respective integrated line intensities andI
i

I
j
,
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e
)m(t

e
)dt

e
, (13)

and we wish to ““ solve ÏÏ a system of N such equations (N
line pairs) for m(t

e
).

In an ideal world, one where the solution to equation (13)
is a smooth positive deÐnite function of we would seekt

e
,

the form of satisfying the least-squares expression,m(t
e
)

X2(Robs, Rcalc) \ ;
l/1

N C(Robsl [ Rcalcl )2
p
lth
2 ] p

lobs
2

D
B 1 , (14)

where l is the label of a particular line pair, is the setMRobsNof observed optically thin line ratios with errors theo-p
lobs

,
retical estimates of the errors in the relevant atomic param-
eters [in and are given by (discussed inK

i
(t
e
) K

j
(t
e
)] p

lth
° 2.3), and the set of are calculated using equationMRcalcN(13). However, as is the case with all ill-posed inverse prob-
lems, we must seek some form of regularized solution for

that minimizes equation (14) subject to some criterion,m(t
e
)

e.g.,

s2\ X2(Robs, Rcalc) ] j'[m(t
e
)] (15)

(adopting X, above, to be a form of the statistical s2
measure between and where j and areRobs Rcalc), '[m(t

e
)]

the smoothing parameter and smoothing functional, respec-
tively. The choice of is subjective and is chosen to'[m(t

e
)]

reÑect the nature of the solution space (see Craig & Brown
1986). For example, if we were to assume that ism(t

e
)

smooth to the nth polynomial order, then we would choose

'[m(t
e
)]\

K P
te

dnm(t
e
)

dt
e
n

K2
dt

e
, (16)

where will clearly be a discretized function and we willm(t
e
)

be required to calculate equation (16) as a forward Ðnite-
di†erence estimate of the actual integral. Of course, equa-
tion (16) can be placed on a general footing [making no
assumption about the functional form of by employ-m(t

e
)]

ing a maximum entropy (ME) measure like

'[m(t
e
)]\

P
te

m(t
e
)

f (t
e
)
log
Cm(t

e
)

f (t
e
)
D
dt

e
, (17)

for some (usually Ñat) prior function The analysis pre-f (t
e
).

sented in ° 3 will use this ME smoothing because of its
unbiased nature and the ensurance of positivity, i.e., the
solution will represent the physical solution best Ðtting the
data and not some member of the family of nth degree
smooth curves ; clearly a more suitable situation.

Digressing a little, Fludra & Schmelz (1995) employed a
line-ratio approach loosely comparable to the RIT to infer
coronal atomic abundances of the Ñaring coronal plasma.
Their discussion focused on the analysis of soft X-ray
(10È100 keV) lines obtained by the Solar Maximum Mission
(SMM) Ñat crystal spectrometer (FCS) (Acton et al. 1980)
and produced, as a by-product, DEM functions for them(t

e
)
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high-temperature Ñaring plasma. The analysis(6¹ t
e
¹ 8)

Fludra & Schmelz (1995) presented, however, did not
attempt to compensate for the potentially damaging theo-
retical atomic uncertainties discussed above. Even though
the community was well aware of the difficulties of con-
structing reliable atomic transition models (Jordan 1974),
the topic was not readdressed until the work of Judge et al.
(1997).

The form of equation (13) means that we cannot use stan-
dard Tichonov regularization methods (imposing smooth-
ing like eq. [16]), but that we must adopt a new nonlinear
approach.6 To this end we have chosen a genetic algorithm
(GA) because of its numerical robustness (Goldberg 1989)
and the ease with which nonlinear calculations like equa-
tion (15) can be encoded (Charbonneau 1995). For the cal-
culations presented here we will specify the mesh overt

ewhich the integrals are discretized and use the ME smooth-
ing functional (over a wide range of values for j) to analyze
the numerical stability of the solutions obtained. Indeed we
show that for the test chosen the results are conclusive that
the RIT is not inÑuenced greatly by large systematic errors
in the atomic ionization/recombination rate coefficients
that could make the results of standard intensity inversions
highly ambiguous. T hat is, the RIT is insensitive to errors
that are likely to dominate standard inversion procedures and,
therefore, provides a new means of obtaining less ambiguous
results about the emitting optically thin region of the solar
atmosphere under examination.

2.2. Implementation of the RIT
As noted above we are making use of the adaptability of a

GA to perform this nonlinear inversion (see Press et al.
1992).7 The GA approach allows a high degree of user
control and also e†ectively allows us to specify the number
of generations (10,000) over which the solution will evolve ;
the Ðnal solution being that which best optimizes equation
(15). In addition, the GA method we use implements a
genetic precedence operator known as ““ elitism,ÏÏ its func-
tion being that the ““ best ÏÏ solution at the end of each gener-
ation is retained in the population of possible solutions for
““ breeding ÏÏ of the next and preceding generations (until
superseded ; see, e.g., Charbonneau 1995 for a concise
description of the genetic operators used here).

Each individual in the population, composed of 100 indi-
viduals, is made up of M \ 30 ““ parameters ÏÏ with the ith
parameter evaluating the DEM function at the ith point in

space, i.e., RIT does not couple these parameterst
e

m(t
ei
).

(there is no interpolation between them), and the choice of
M \ 30 as the number of discretization points is entirely
arbitrary. This number can be increased, but care must be
exercised because, as M increases, the line emissivities get
““ closer ÏÏ to the continuous integral operators8 they rep-
resent and increase the possibility of numerical instability.
The choice of N, the number of line ratio pairs used in the

6 Standard linear inversion techniques are not valid because eq. (13)
contains the optimizing quantity on numerator and denominator of a
calculation and the resulting ratio of linear systems is mathematically
meaningless, as stated above.

7 We note that other optimization methods may be able to solve this
system of equations, see, e.g., AMOEBA-A ““ downhill ÏÏ SIMPLEX algo-
rithm from Press et al. (1992).

8 Not only do they approach the actual form of the integral operators, a
patently poor property, but they reduce the e†ectiveness of the genetic
operators ; this is discussed as earlier, see, e.g., Goldberg (1989).

analysis, is also arbitrary, but any signiÐcant increase in N,
say above 30, may also produce an increase in numerical
instability of the recovered solution. This is particularly true
if using an increased number of ratio pairs from one partic-
ular ionic stage, since then the ““ linear dependence ÏÏ of the
operator to be inverted is increased considerably ; see dis-
cussion in McIntosh, Charbonneau, & Brown (2000).

The action of the RIT is best described as the following :
1. Generate 100 random solutions as an initial popu-

lation, calculate the resulting s2 of equation (15) for each
individual.

2. Choose a subset according to their values of s2 and
breed them to produce a new population.

3. Calculate the value of s2 for each individual in the new
population.

4. Replace the old population with the new one.
5. Check that the number of generations has reached its

maximum value ; if not, return to step 2.

Our work is not Ðnished on the recovery of a solution
from the RIT. The recovered function from optimizingm(t

e
)

equation (15) (via eq. [14]) does not allow us to Ðx the
amplitude of This is simply because the inferred solu-m(t

e
).

tion will always be a scalar multiple C of its true value since

Rcalc\
/
te

K
i
(t
e
)[Cm(t

e
)]dt

e
/
te

K
j
(t
e
)[Cm(t

e
)]dt

e
(18)

will always hold. So, to resolve this problem we must use
the inferred solution to recalculate the N line inten-m(t

e
)

sities, We choose the scaling factor S(BC) given byIcalc.

S\ 1
;

j/1N w
j

C
;
j/1

N
w

j

AIobsj

Icalcj

BD
, (19)

where for observational error In practice,w
j
\ 1/pobsj pobsj .

we need only Ðx a single line intensity in the calculation to
Ðx the absolute magnitude of but in the presence ofm(t

e
),

noise this leads to an element of bias in the function scaling.
This possible source of bias arises since any particular line
intensity is only ““ sensitive ÏÏ over a short span of the whole

domain (from the dependence of the line emissiont
e

t
ecoefficient) ; the concept of ““ emissivity coverage ÏÏ is dis-

cussed at length in McIntosh et al. (2000). Thus, equation
(19) yields an unbiased scaling factor for by e†ectivelym(t

e
)

averaging out the scaling over the entire domain andt
eweighting according to the observational errors.

2.3. T he Calculation of Atomic Errors
To calculate meaningful values of (for each line pair l,p

lthsee eq. [14]), we have performed a Monte Carlo simulation
to get a distribution of 20 perturbed line emissivities for
each transition. Perturbed, in the sense that their com-
ponent atomic terms (rates and coefficients) are randomly
perturbed about their ““ accepted ÏÏ values. The amounts by
which these coefficients and rates are perturbed are relevant
to Ðgures put forward in the literature, speciÐcally in Judge
et al. (1995) and Judge et al. (1997). An analog to equation
(3) will help with this discussion, i.e., we can express the
emissivity of the optically thin emission line i (in the sim-
plest sense) as

K
i
(t
e
) B i]X

i
(t
e
) ]Y

i
(t
e
) , (20)

where i is a constant, is the conglomerate ofX
i
(t
e
) \ nion/nelthe bound-free (b-f ) terms, and of theY

i
(t
e
) \ n

u(i)/nion
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bound-bound (b-b) terms of the transition as functions of t
e
,

respectively. So, if these quantities have associated errors
and then the fractional error in the line emissivitydX

i
dY

i
,

can be expressed as9

AdK
i

K
i

B2\
AdX

i
X

i

B2]
AdY

i
Y

i

B2
. (21)

The calculations presented in this chapter have associated
standard (1 p) deviations in the fractional errors that are set
as follows (see Judge et al. 1997) :

1. For the bound-bound processes we adopt a value of
3%. This of course ensures, by deÐnition, that 32% of the
random realizations will have errors in excess of 3%.

2. We have chosen to use logarithmic (base 10 ; log-
normal distributed) deviations of ^0.1 about the mean
value for bound-free processes. This value is clearly an esti-
mate, because the amplitude of errors in such (b-f) processes
are not well known, Judge (1997, private communication).
These values reÑect possible lower magnitude limits on the
b-b and b-f terms. So, the e†ects on line emissivity areK

i
(t
e
)

conservatively estimated to lie between 10% and 125%,
respectively.

The actual process of perturbing the atomic rates/
coefficients is carried out by routines of the HAOS-Diaper
atomic calculation package (Judge & Meisner 1994). To
obtain actual estimates of we have to obtain a distribu-p

lthtion of line emissivities for each line, each with di†erent
random realizations of the constituent atomic factors. We
obtain 20 such realizations for each line and use the follow-
ing recipe to construct values of for the line pair l \ (i, j).p

lth1. Calculate the integrated line intensities for each line
and each perturbed line emissivity ; yielding a distribution
of Q\ 20 line intensities. It should be noted that we use a
constant (i.e., Ñat) to calculate these intensities, butm0(te)such an approximation is not taken lightly and is made
primarily to have a simple and uniform error estimate for

9 Judge et al. (1997) erroneously used the linear form. Eq. (21) is the
correct form.

every line no matter at what temperature it is formed at. So,
returning to the problem in hand we have calculated 20
randomly perturbed values (see eq. [8]),I

i
@

I
i
@ \
P
te
K

i
(t
e
)m0(te)dt

e
. (22)

2. Repeat the previous calculation for every possible line
until distributions of line intensities areI

i
\ MI

i
1, . . . , I

i
QN

formed.
3. Use the distributions of step 2 to form distributions for

the various emission line pairs Note thatR
l
\ MR

l
1, . . . , R

l
QN.

the individual values of are calculated withR
l
j(1¹ j ¹Q)

the denominator, and numerator line intensities are taken
from the same model, j.

4. Given that we now have random distributions for the
same ““ Ñat ÏÏ function, it is reasonable to assume thatm(t

e
)

the standard deviations (1 p) of the distributions well
approximate the values of (see the values given in Tablep

lth1).

3. RESULTS : RIT APPLICATION TO SKY L AB S-055
SPECTROHELIOMETER DATA

In this section we make use of the composite (average)
quiet-Sun spectra of Vernazza & Reeves (1978 ; Figs. 2È4)
observed in the 280È1350 wavelength range of theA�
Harvard S-055 spectroheliometer (Reeves et al. 1977) on the
Apollo Telescope Mount during the 1973È74 Skylab
mission. It is our aim to make use of the 39 strongest Ðrst-
order lines (see Table 1) to infer an average quiet Sun m(t

e
)

and make a comparison to those obtained using a standard
intensity inversion (both calculated using perturbed and
standard10 kernels) and the benchmark form published by
Raymond & Doyle (1981). In this study we are careful to

10 ““ Standard ÏÏ in this sense means calculated using coefficients that are
the accepted values in the atomic calculations.

TABLE 1

DETAILS OF THE LINE-RATIO PAIRS USED IN THE RIT CALCULATIONS

j
N

j
D

j
N

j
D

Number Ion
N

(A� ) Ion
D

(A� ) pthl/Rthl Number Ion
N

(A� ) Ion
D

(A� ) pthl/Rthl

1 . . . . . . . . C II 903.962 C II 1037.02 0.0386 2 . . . . . . . . C II 1037.02 C II 1335.66 0.0481
3 . . . . . . . . C III 977.017 C III 1175.71 0.0264 4 . . . . . . . . Mg VIII 430.465 Mg VIII 436.670 0.0355
5 . . . . . . . . Mg X 609.793 Mg X 624.941 0.0013 6 . . . . . . . . Ne VI 401.136 Ne VI 558.594 0.0567
7 . . . . . . . . Ne VI 401.136 Ne VI 562.701 0.0570 8 . . . . . . . . N III 685.817 N III 989.799 0.0511
9 . . . . . . . . N III 685.817 N III 991.511 0.0506 10 . . . . . . O II 718.505 O II 833.330 0.2422
11 . . . . . . O III 525.797 O III 702.332 0.0521 12 . . . . . . O IV 553.329 O IV 790.199 0.0379
13 . . . . . . O IV 553.329 O IV 787.710 0.0368 14 . . . . . . C II 1037.02 C III 977.017 0.2282
15 . . . . . . Mg X 609.793 Mg IX 368.070 0.5075 16 . . . . . . Ne VI 562.701 Ne VII 465.219 0.0864
17 . . . . . . Ne VII 465.219 Ne VIII 770.409 0.1597 18 . . . . . . Si II 1264.74 Si III 1206.50 0.1148
19 . . . . . . N II 1085.53 N III 685.817 0.2122 20 . . . . . . O III 599.598 O II 834.465 0.0496
21 . . . . . . O III 702.332 O II 834.465 0.0398 22 . . . . . . O II 718.505 O III 525.797 0.2634
23 . . . . . . O IV 790.199 O III 702.332 0.1684 24 . . . . . . O IV 553.329 O V 629.730 0.0613
25 . . . . . . O IV 553.329 O V 758.675 0.0578 26 . . . . . . O V 629.730 O VI 1031.91 0.2696
27 . . . . . . O II 833.330 C III 977.017 0.1260 28 . . . . . . N V 1238.82 O IV 787.710 0.1556
29 . . . . . . Si XII 499.406 Fe XV 417.258 0.3568 30 . . . . . . Si XII 520.665 Fe XV 417.258 0.3552

NOTE.ÈListed are the ratio pair number, the numerator and denominator (subscript N and D quantities, respectively) atom, ionization stage,
wavelengths, and the ratio of standard deviation, to the theoretical line ratio, from the ensemble of 20 calculations for ratio pair l. It is easy topthl, Rthl

,
identify pairs with large errors.
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include the emissivities from lines (particularly of the same
ionic multiplets) that form blends with those lines identiÐed
within the spectral resolution of the instrument (1.6 A�
FWHM), in addition to those blends noted in the tables of
Vernazza & Reeves (1978). We then Ðnd that some 87 emis-
sivities combine linearly to form the 39 used in the present
analysis.

In the following we use kernels (standard and perturbed)
calculated (using the aforementioned HAOS-Diaper
package) for a constant electron pressure, derived from the
same data by Raymond & Doyle (1981), 4] 1014cm~3K.
The assumption of constant is not only to make com-P

eparison with the calculations of Raymond & Doyle (1981)
but to ensure that the calculations are consistent with
observations and currently accepted models of the solar
transition region (TR), which suggest that the TR is a con-
stant pressure interface between the chromosphere and
corona (see, e.g., chap. 6 of Mariska [1992]). In addition we
are limiting the number of discretization points tot

eM \ 30 (primarily for the reasons mentioned in ° 2.2) over
the range We use both standard and per-4.0¹ t

e
¹ 6.5.

turbed kernels (with the latter belonging to a single ran-
domly selected set of ° 2.3) to test the hypothesis that the
RIT is robust to potential atomic inaccuracies as alluded to
in McIntosh et al. (1998) and to recover a structure similar
to that of Raymond & Doyle (1981). Indeed, performing
such ratio inversions is a worthwhile exercise, especially
when we consider the insufficiency of standard inversion
techniques in dealing with such inaccuracies.

As mentioned in ° 2.1 the RIT optimizes equation (15),
where the quantities are as previously deÐned and '[m(t

e
)]

is deÐned by the logarithmic smoothing operator of equa-

tion (17). We obtain results for a range of values for j (10~4,
102) for both standard (Fig. 1) and perturbed (Fig. 2)
kernels.

In each of Figures 1 and 2 the means by which we identify
the best solution is simple : in any inverse formalism it is
standard practise to plot s2 against j and choose the best
solution as that with j closest to the origin of the plot,
according to (s2] j2)1@2 (see, e.g., Turchin, Kaslov, &
Malkevich 1971). The addition of the GA method in the
RIT adds an extra degree of freedom in the calculation, i.e.,
we need to Ðnd a solution that is sufficiently smooth ; to this
end we have plotted s2 against j against roughness in
Figures 1 and 2. We evaluate the roughness (D) of any test
solution as

D\ o'[m(t
e
)] o , (23)

where is given, in this case, by equation (17). In'[m(t
e
)]

Figures 1 and 2 the location of the best solution is indicated
by a solid black circle according to the minimal value of
(s2] j2]D2)1@2.

Figures 3 and 4 show the details of the best solutions
indicated in Figures 1 and 2, respectively. Figure 3a shows
the optimal solution for the RIT (solid line), the intensity
inversion for the same data (dashed line ; 39 emission lines
used) and the quiet-Sun average DEM presented by
Raymond & Doyle (1981) for this data set (triple-dotÈdashed
line). These inversions are for the standard kernels. The
intensity inversion shown is that which produces a compa-
rable Ðt to the line ratios used in the calculation, the error
bars on this and the RIT solution are calculated a posteriori
relative to the discrepancies between the observed and cal-
culated line ratios. The bottom portion of Figure 3 exhibits

FIG. 2.ÈGlobal results of the RIT using a maximum entropy smoothing functional and the set of perturbed line emission coefficients (kernels). See Fig. 1
for further details. In this case the optimal value of j has an associated s2 of 7.079.(jopt \ 6)
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FIG. 3.È (a) : Optimal solution for the RIT with standard kernels (solid line) indicated in Fig. 1. Also shown is the solution for a line intensity(jopt \ 6)
inversion (dashed line) and that calculated by Raymond & Doyle (1981) for the same line intensities. (b) demonstrates the accuracy to which the observed line
ratios were recovered by the inferred RIT (asterisks) within the observational errors. The legend of panel (b) is labeled according to the ratio type : samem(t

e
)

atom, A, and same ionization stage, Z, ratios are shown as squares, while di†erent Z, same A ratios and di†erent A ratios are shown as diamonds and
triangles, respectively.

this discrepancy for the RIT solution. In this case the value
of s2 was 3.917.

In Figure 4 we show an identical plot for the perturbed
kernels. Here, the optimal solution has s2 of 7.079. Values
greater than 1 indicate that we have underestimated the
denominator of equation (14), not a surprising result since
the errors in the atomic data are actually unknown. It is
also worth noting that the solution (for both ““ standard ÏÏ
and ““ perturbed ÏÏ kernels) gives rise to large discrepancies
between the calculated and observed ratios for lines of the
same atom, but di†erent ionization stage (diamond).

On inspection of Figures 3 and 4 it is clear that (within
the error bars) there is very little functional di†erence
between the RIT solutions, yet the intensity inversion solu-
tions have functional variations far outside the range per-
mitted by the error bars. In short, the solution returned by
the RIT is much less sensitive to the errors in the atomic
calculations since it produces a quantitatively identical
solution in both cases, whereas the intensity inversions

functional form varies a great deal depending on the kernels
used.

3.1. RIT versus Intensity Inversion : A
““Forward-Backward ÏÏ Comparison

To test the hypothesis that the RIT provides a more
robust inference of we will make a ““ forward-m(t

e
),

backward ÏÏ comparison between the RIT and a standard
inversion technique11 (see, e.g., Thompson 1991 ; Griffiths &
Jordan 1998 ; Landi & Landini 1998) ; both using ME
smoothing. Again, these inversions make use of P\ 30 dis-
cretization points uniformly distributed in The forwardt

e
.

calculation involves computation of line intensities (with
uniformly distributed errors in the range ^15%) for a given
model function. Again, as above, the model we havem(t

e
)

11 Standard, but not to be confused with the forward solution methods
extensively used.
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FIG. 4.È(a) Optimal solution for the RIT with perturbed kernels (solid line) indicated in Fig. 1. Also shown is the solution for a line intensity(jopt \ 6)
inversion (dashed line) and that calculated by Raymond & Doyle (1981) for the same line intensities. In comparison with Fig. 3 it is clear that the RIT
solutions have a characteristic functional form that is the same, within the error bars, but the intensity inversions do not behave in nearly the same way. (b)
The plot demonstrates the accuracy to which the observed line ratios were recovered by the inferred RIT (asterisks) within the observational errors ; them(t

e
)

legend is labeled with the same conventions as Fig. 3b.

used is the average quiet Sun taken from Figure 3 ofm(t
e
)

Raymond & Doyle (1981).12
The results of the forward-backward calculations are

shown in Figure 5. The solid line identiÐes the RIT solution
and dashed line is the intensity inversion solution. Both of
these solutions give intensity recoveries with s2B 1.5 and,
hence, are judged equivalent solutions on that criteria
alone. In Figure 5a we see that both recover well, butm(t

e
)

this is no great surprise given that the standard emissivities
were used in the forward calculation of the intensities used.
Figure 5b demonstrates the beneÐt gained in using the RIT:
now the solution for the intensity inversion is not only
numerically unstable, but zero in parts, and this is with a

12 We have used the numbers from Fig. 3 of Raymond & Doyle (1981)
and interpolated a best Ðt curve to the points. This curve is then our model

and is used to compute synthetic line intensities for the 39 lines bym(t
e
)

computing eq. (8) for each. Such calculations are termed as ““ forward ÏÏ
calculations, using the RHS of eq. (8) to determine the LHS. The model
curve of Raymond & Doyle (1981) is then the target function of the
““ backward,ÏÏ or inverse, process.

relatively high value of j. In general, it is clear that the RIT
solution is signiÐcantly better. To obtain a better recovery
of with the intensity inversion requires that we increasem(t

e
)

j signiÐcantly, see McIntosh et al. (2000) for further dis-
cussion.

4. POSSIBLE EXTENSION OF THE RIT

In principle the extension of the RIT code as it stands to
deal with DEM in (see Almleaky et al. 1989 ;n

e
[f(n

e
)]

Brown et al. 1991 ; McIntosh 1998) or the bivariate DEM
(i.e., of and see eq. [4]) of Hubeny & Judgen

e
T
e
; k(n

e
, T

e
),

(1995) is numerically very straightforward, although the
latter will be signiÐcantly more computationally expensive.
A work in progress incorporating both and allowing usn

e
t
eto target some integral equation in (an analog to eq. [4])p

ewould address some of the ambiguity and consistency prob-
lems of treating constant constant problems individ-t

e
, n

eually (McIntosh 2000). Indeed, such an approach may
bypass the problems of the full bivariate inversion raised by
Judge et al. (1997). In addition to these extensions, the
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FIG. 5.ÈThe results of the ““ forward-backward ÏÏ calculation using line intensities calculated by putting the Raymond & Doyle (1981) function intom(t
e
)

the right-hand side of eq. (8). In both panels we show the reconstructed functions for RIT (solid line ; j \ 4) and a standard intensity inversion (dashedm(t
e
)

line ; j \ 103) for both standard (panel a) and perturbed (panel b) emissivities. The forward calculation was performed using the standard emissivities, so the
fact that both methods recover the source well in panel (a) is no surprise. From panel (b) it is clear that the RIT is better equipped to deal with them(t

e
)

perturbations in the line emissivities. Indeed, the RIT solution is numerically stable and physical (positive deÐnite), whereas the intensity inversion is neither.

application of the RIT may shed light on cases where basic
assumptions underlying the DEM inverse problem are par-
tially violated, e.g., ionization equilibrium or thermalized
particle distributions. This, however, is a subject for further
work.

5. CONCLUSION

We have demonstrated that it is possible to develop and
utilize a line-ratioÈlike methodology to infer DEMs in t

e
,

in a numerically robust manner. In addition, RIT ism(t
e
),

able to address and overcome difficulties presented by

uncertainties in atomic parameters discussed by Judge et al.
(1997) [allbeit for the case of as being ak(n

e
, T

e
)]

““ fundamental limitation ÏÏ in the inference of DEMs from
remotely sensed data.

The author is grateful for the interesting comments made
on this text by C. Jordan, P. Judge, and P. Charbonneau
and acknowledges the support of a UK PPARC student-
ship and the HAO visitor program during which this
research was carried out.
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