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ABSTRACT

Observational inferences of the power-law frequency distribution of energy release by solar flares, and in
particular its logarithmic slope , depend critically on the geometric relationship assumed to relate the observedaE

emitting areaA and the underlying emitting volumeV. Recent results on the fractal nature of avalanches in self-
organized critical models for solar flares indicate that this relationship is a power law with indexgV ∝ A g p

. We show that when proper account is made for the fractal geometry of the flaring volume, hitherto1.41(�0.04)
discrepant observational inferences of are brought in much closer agreement. The resulting values of liea aE E

tantalizingly close, but still below the critical value , beyond which Parker’s conjecture of coronala p 2.0E

heating by nanoflares is tenable.

Subject headings: Sun: flares — Sun: magnetic fields — Sun: UV radiation — Sun: X-rays, gamma rays

1. INTRODUCTION

The last decade has witnessed an unprecedented increase in
the body of observational data on solar flares, through a se-
quence of spaceborne instruments with ever-increasing spatial
and temporal resolution. These data allow us, in principle, to
quantitatively address Parker’s conjecture of coronal heating
by nanoflares (e.g., Parker 1988). The crux of the matter is the
form of the frequency distribution of energy release byf (E)
flares [such that is the fraction per unit time of flaresf (E)dE
releasing energy in the rangeE to ]. The related fre-E � dE
quency distribution for raw peak flux (counts s�1, say) is known
to be a well-defined declining power law in peak flux (e.g.,
Dennis 1985), suggesting that is itself a declining powerf (E)
law in flare energyE:

�aEf (E) p f E , a 1 0. (1)0 E

From the coronal heating point of view, the key lies in the
numerical value of : it is readily shown that the smaller flaresaE

dominate energy input to the corona provided , whicha 1 2E

then becomes a sine qua non condition for Parker’s conjecture.
Because of their characteristic spatial and temporal self-

similarity, avalanche models for solar flares provide a natural
explanation for the observed power laws in flare parameters
(see Lu & Hamilton 1991; Lu et al. 1993; and Charbonneau
et al. 2001 for a pedagogical introduction and a recent review
of these models). The basic credo is that a flare is the collective
manifestation of energy released by an avalanche of small-scale
reconnection events, cascading through coronal magnetic field
structures mechanically stressed by stochastic motions of their
photospheric footpoints. In fact, Parker’s nanoflare picture in-
cludes all the ingredients deemed necessary to lead toself-
organized criticality (SOC; Bak, Tang, & Wiesenfeld 1987;
Jensen 1998): a slowly driven (photospheric footpoint motions)
open system (magnetic structure embedded in the solar corona)
subject to a self-stabilizing local threshold instability (magnetic
reconnection) leading to localized transport and readjustment
of the physical quantity subject to instability (Lu 1995; Char-
bonneau et al. 2001). Such systems are well known to release

energy intermittently, in the form of episodic avalanches with
power-law size distribution. In the context of such models, there
is no fundamental difference between a large “classical” X-ray
flare and small transient brightening such as observed in the
EUV; the latter is just a much smaller avalanche of reconnection
events than the former.

The avalanche model for solar flares has done quite well in
reproducing the form and logarithmic slope of the observed
frequency distribution of peak fluxP (see Lu & Hamiltonf (P)
1991). For the net energy release,E, the comparison is less
favorable, with observed inferences yielding a wide range of

, with most values, moreover, significantly larger than in theaE

model (see Charbonneau et al. 2001, and references therein).
It is not yet clear how severe this discrepancy is, given that

the inferred is far more model dependent than the cor-f (E)
responding distribution for peak flux. The quantity actually
observed, the spectral intensity of linei, for spec-I p P/(4pA)i i

tral power and projected emitting areaA, can be written asPi

�2 �1 �1I p K (T )y(T )dT ergs cm sr s , (2)i � i e e e
Te

where is the differential emission measure in temperaturey(T )e

(DEM), is the line/bandpass emissivity, and any depen-K (T )i e

dence on the electron density has been neglected (see Craigne

& Brown 1976; McIntosh 2000). Most often, is stronglyK (T )i e

peaked, so that the intensity can be assumed to be proportional
to the value of in a narrow band (�0.1 dex) about they (T )i e

peak temperature of line formation . In the limit∗T K (T ) re i e

[ being the Dirac delta function], equa-∗K d(T � T ) d(x � x )i e e 0

tion (2) can be expressed in terms of the integrated intensity
flux (ergs cm�4 s�1).∗f (p I /A) ≈ K y(T )/Ai i e

Following Brown et al. (1991), we assume ,2y(T ) p n he e

whereh is the column depth, and obtain an estimate for the
electron density (with filling factor of unity): n pe

(units: cm�3). This estimate allows us to calculate∗ 1/2[y(T )/h]e

the net thermal energy release underlying the observed emis-
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Fig. 1.—The three-dimensional structure of the time-integrated avalanche in a 323 lattice. Here 5145 lattice nodes, plotted as small cubic blocks, have gone
unstable at least once over the duration of the avalanche. This cluster is the model’s equivalent to the flaring volumeV on the right-hand side of eq. (3). The
right-hand side of the figure shows views of the projections of the time-integrated cluster on the three coordinate planes of the lattice. The gray scale in the
projected planes indicates the number of avalanching nodes, or column depth, along the projection line of sight.

sion:

∗E p 3n k T V ergs, (3)th e B e

whereV is the volume of the emitting plasma. A common (and
probably reasonable) assumption is that of constant pressure,
∝ , within coronal structures (see, e.g., Raymond & Doylen Te e

1981), so that the remaining dependency is on the flaring vol-
ume, which must then be related to the observed projected area
via some geometric model. Such models include, for example,
the loop model of Aschwanden et al. (2000), leading toV ∝

(with constant filling factor), or the so-called cylinder3/2A
model, where it is assumed that the flaring volume is a column
of heighth extending below the projected area, yieldingV ∝

for constanth, or for the alternate common as-3/2A V ∝ A
sumption (see, e.g., Parnell & Jupp 2000; Krucker &�h ∝ A
Benz 1998; Mitra-Kraev & Benz 2001).

2. THE FLARING VOLUME AS A FRACTAL OBJECT

We have performed a large series of simulation runs using
what is essentially a scalar version of the Lu et al. (1993)
three-dimensional avalanche model. Full details concerning
the model and numerical implementation can be found in
Charbonneau et al. (2001). McIntosh et al. (2001) have per-
formed a detailed analysis of the geometric properties of av-
alanches in that model and have presented results pertaining
to the fractal dimensions and frequency distributions of av-

alanche parameters for model runs carried out on two- and
three-dimensional lattices.

Of particular interest in the present context is the form of the
relationship existing between the avalanchevolume V, defined
as the total number of lattice nodes having gone unstable at least
once in the course of the avalanche, and theprojected area A
of the avalanche, corresponding to the volume projected onto
some arbitrary plane, which, for computational convenience and
without any loss of generality, we take to be one of the three
lattice coordinate planes. The area is thus the number of nodes
in the two-dimensional projection plane for which at least one
node along the corresponding perpendicular line of sight has
gone unstable at least once in the course of the avalanche. Fig-
ure 1 illustrates a cluster of lattice nodes that have avalanched
at least once in the course of a large avalanche and the three
orthogonal projections thereof, shown on the right of the figure.
The three-dimensional cluster is the model’s equivalent to the
emitting volume on the right-hand side of equation (3). Clearly,
this geometrically complex object has an intricate structure that
could hardly be guessed from any of its projected views.

A scatter plot of volume versus projected area (Fig. 2) reveals
a power-law relationship of the form , withgV ∝ A g p

. Table 1 shows that the value ofg is stable as the1.41(�0.04)
lattice size is varied. Interestingly, this value corresponds to
neither of the exponents for the two geometric models most
often used in flare data analyses, namely, for the cylinderg p 1
model with constant column depthh and for the loopg p 1.5
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TABLE 1
Power-Law Indices g of the Relationship between
Avalanche Volume and Projected Area for Three-

dimensional Lattices of Various Linear Size L

L g

16 . . . . . . . . . . . . . . . . . . . . . 1.44� 0.05
24 . . . . . . . . . . . . . . . . . . . . . 1.41� 0.04
32 . . . . . . . . . . . . . . . . . . . . . 1.40� 0.03
48 . . . . . . . . . . . . . . . . . . . . . 1.42� 0.04
64 . . . . . . . . . . . . . . . . . . . . . 1.41� 0.04

Fig. 2.—Scatter plot of 0.27 million time-integrated avalanche volumesV
and projected areasA for a typical 643 lattice simulation. A power law with
index yields a good fit. Errors on the fit are estimated by runningg p 1.41
the model several times, each with a different random “seed” (see Charbonneau
et al. 2001 for further details), to compute a Monte Carlo estimate of the
power-law index, in this instance .g p 1.41� 0.04

model and cylinder model with . With the avalanche�h ∝ A
model taken at face value, this implies that extant observational
analyses have either overestimated ( ) or underestimatedg p 1
( ) the emitting volume of the smaller avalanches, asg p 1.5
compared to that of the larger avalanches. The net effect is, as
per equation (3), a steepening ( ) or flattening ( )g p 1 g p 1.5
of the flare energy frequency distribution.

3. CORRECTING FOR GEOMETRIC EFFECTS

The task now at hand is simple. We must express the ob-
servationally inferred frequency distribution in termsf (E)dE
of a new energy release variable corrected for′E [p s(E)E]
geometric rescaling in terms of the fractal dimension of ava-
lanches, through the term . Letb be the logarithmic slopes(E)
of the (nonfractal)V-A relationship used in observational analy-
ses. In terms of projected areas, the correction factors to the
inferred emitting volume is evidently something likes(A) p

. With , this yieldsg b bA /A E ∝ A

(g�b)/bs(E) p E . (4)

The quantity must now be expressed in terms of′ ′f (E )dE
. With the latter given by equation (1), some straight-f (E)dE

forward algebra leads to

′dE′ ′ �(a �Da)Ef (E )dE p f (sE) dE ∝ f E dE, (5)0dE

where the correction factor to the power-law index isDa aE

given by

(1 � a )(b � g)E
Da p . (6)

b

Table 2 lists a selection of values inferred by various recentaE

observational analyses of UV/EUV data, together with the “cor-
rected” values obtained by adding the as computed above.Da
It is remarkable that previously widely discrepant inferences
for are now brought in much better agreement when theaE

fractal nature of the flaring volume is taken into consideration.1

4. DISCUSSION

Working within the framework of an avalanche model for
solar flares, we have argued that the heated plasma responsible
for the emission of observed short-wavelength radiation is dis-
tributed in a geometrically complex emitting volume. Cylinder
models with constanth overestimate the emitting volume of

1 Note that the value of Aschwanden et al. (2000) is obtained in a loopaE

model characterized by a filling factor that scales with event size as a power
law; this is why in their model, as opposed to 1.5 for a model withb p 1.44
constant filling factor.

smaller flares, as compared to large ones, and consequently pro-
duce markedly too steep a frequency distribution of energy re-
lease. The loop model of Aschwanden et al. (2000), or the cyl-
inder model with , on the other hand, leads to a slight�h ∝ A
underestimate of the power-law index of this frequency dis-aE

tribution. Interestingly, using our model results to correct for
these geometric effects brings hitherto discrepant results into
much better agreement with one another. Although this inter-
esting result should not be overinterpreted, it does demonstrate
that geometric assumptions play a major role in the reconstruc-
tion of thermal energy release from short-wavelength observa-
tions of solar flares, and that some of the geometric models used
thus far in observational analyses are quite possibly far removed
from reality.

The possibility remains that different versions of the ava-
lanche model could yield significantly differentg values and,
thus, corrected indices numerically distinct from those listedaE

in Table 2. We conjecture that all avalanche models charac-
terized by local and isotropic instability criteria and redistri-
bution rules (see Charbonneau et al. 2001 for more on these
model ingredients) will have similar values ofg; we base this
conjecture on the relative robustness of the frequency distri-
butions of avalanche parameters within the “local/isotropic”
subset of possible avalanche models. This is clearly an issue
that merits further investigation.

Most geometrically corrected values for , listed in TableaE

2 herein, lie tantalizingly close to, although still distinctly be-
low, the transition value above which Parker’s con-a p 2.0E

jecture of coronal heating by nanoflare is tenable in principle
(obviously, the global flaring rate parameter in eq. [1] mustf0

also be high enough). Our geometric correction procedure has
neglected any possible dependency of other physical quantities
(electron density, temperature, etc.) on event size. Not sur-
prisingly, introducing such dependencies can lead to further
variations in the resulting and, under suitable numericalaE

choices, can lead to (see, e.g., Mitra-Kraev & Benza 1 2E

2001, § 2).
As shown in McIntosh et al. (2001), distinct fractal dimen-

sions and associated power-law relationships are obtained if
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TABLE 2
Geometric “Corrections” to Recent Analyses of UV/EUV Flare Energy Release

Reference Geometric Model b aE a � DaE

Krucker & Benz 1998. . . . . . . . Cylinder, constanth 1.00 2.30–2.60 1.77–1.94
Parnell & Jupp 2000. . . . . . . . . Cylinder, constanth 1.00 2.42 1.84� 0.04
Parnell & Jupp 2000. . . . . . . . . Cylinder, �h ∝ A 1.50 2.02 2.08� 0.04
Aschwanden et al. 2000. . . . . . Loop 1.44 1.79� 0.08 1.81� 0.09

Fig. 3.—Scatter plot of the time-integrated and peak avalanche projected
areas, both measured in “pixels” ({lattice nodes) for the same 643 lattice
simulation as shown in Fig. 2. A power law with indexd p 1.35(�0.01)
yields a good fit. The slight downturn of data points at the upper right of the
plot is due to the finite size of the lattice, as the projected area is clearly
bounded above as here.2A p N (p 4096)max

the projected area and volume of avalanches are estimated from
“instantaneous” snapshots of avalanches at their peak. Fig-
ure 3 shows a scatter plot of time-integrated projected area
versus peak projected area, which is well fitted through a power
law with index , extending about 2 orders ofd p 1.35(�0.01)

magnitude in time-integrated area. This offers a potentially
interesting observational test for the geometric properties of
flares/avalanches, as observed with high spatial resolution and
temporal cadence.2 The exact value of the power-law index
might be difficult to reliably infer, in view of unavoidable de-
tection threshold effects. Moreover, observationally even an
“instantaneous” snapshot involves some level of time integra-
tion. Nonetheless, the projected peak and time-integrated av-
alanche areas should definitely be related via a power law, with
index significantly larger than unity. If not, then something is
seriously amiss with the avalanche model for solar flares.

S. W. M. acknowledges the past support of the NCAR Ad-
vanced Study Program and is currently supported by an Ex-
ternal Fellowship from the European Space Agency at GSFC.
The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

2 It is trivially obvious that the time-integrated area should be larger than
the peak area; it is far less obvious that the two should be related via a power
law, as they are here in the avalanche model. This power-law form is again
a consequence of the spatial self-similarity of avalanches in the SOC state.
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