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ABSTRACT
It has recently been argued that the distribution of waiting times between successive solar Ñares is

incompatible with the prediction of lattice models, which interpret Ñares as avalanches of magnetic
reconnection events within a stressed magnetic structure driven to a state of self-organized criticality by
stochastic motions of the photospheric magnetic footpoints. Inspired by a suggestion recently made by
Wheatland, we construct modiÐed lattice models driven by a nonstationary random process. The
resulting models have frequency distributions of waiting times that include a power-law tail at long
waiting times, in agreement with observations. One model, based on a random walk modulation of an
otherwise stationary driver, yields an exponent for the power-law tail equal to 2.51 ^ 0.16, in reasonable
agreement with observational inferences. This power-law tail survives in the presence of noise and a
detection threshold. These Ðndings lend further support to the avalanche model for solar Ñares.
Subject headings : MHD È Sun: Ñares È Sun: magnetic Ðelds

1. INTRODUCTION

It is generally agreed that solar Ñares are powered by
magnetic energy stored in the form of electric currents
Ñowing within complex magnetic structures embedded in
the corona, in particular those overlying active regions. The
observed short timescales for energy release, typically
seconds to minutes, point to magnetic reconnection as the
most likely mechanism of energy release (see Kulsrud 1998 ;
Priest & Schrijver 2000 ; references therein). Although many
aspects of the reconnection mechanism under solar coronal
conditions remain poorly understood, it is clear that the
time-varying electric Ðelds generated in the course of a
reconnection event have the ability to locally accelerate
charged particles to superthermal velocities. It is the sub-
sequent impact of these fast particles onto the colder sur-
rounding plasma that leads, via bremsstrahlung, to the
emission of hard radiation that is so spectacularly observed
in X-ray solar images.

Solar X-ray and extreme-ultraviolet emission have been
monitored almost continuously for nearly three decades
now by various satellite-borne instruments. Those obser-
vations have revealed that the frequency distribution f (E) of
Ñare energy E follows a well-deÐned power law f (E) P E~aE
over 8 decades in Ñare energy, with the value of the expo-
nent in the range 1.5È2.6, the actual value being sensitivea

Eto the adopted even selection criteria as well as to the physi-
cal and geometric assumptions made in converting
observed Ñuxes to volumetric energy release (see, e.g.,
Crosby, Aschwanden, & Dennis 1993 ; Bromund, McTier-
nan, & Kane 1995 ; Krucker & Benz 1998 ; Aschwanden et
al. 2000 ; references therein). A similar power law is obtained
for the frequency distribution of peak Ñaring energy, i.e.,

with Interestingly, the values of thesef (P)P P~aP, a
P
^ 1.8.

exponents are largely independent of the phase of the solar
cycle (Dennis 1985 ; Crosby et al. 1993), which indicates that
the Ñaring process is an intrinsic property of the coronal
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magnetic Ðeld rather than being controlled by an external
driving mechanism such as magnetic Ñux emergence
(although it is certainly well-established that Ñux emergence
is a common trigger of the Ñaring process).

In their groundbreaking paper, Lu & Hamilton (1991 ;
see also Lu et al. 1993 ; Lu 1995) demonstrated that the
observed power-law distribution of Ñare energy release is
well reproduced under the assumption that the solar corona
is in a state of self-organized criticality (SOC; see Bak,
Tang, & Wiesenfeld 1987 ; Jensen 1998 ; Sornette 2000).
Physical systems in such a state undergo transitions
between metastable states and, in so doing, release energy in
the form of self-similar ““ avalanches.ÏÏ The system is said to
be ““ critical ÏÏ because its correlation length in response to
perturbations spans the whole system. The critical state is
said to be ““ self-organized ÏÏ because no Ðne-tuning of the
external parameter(s) is required, in contradistinction to
classical thermodynamic phase transitions. Jensen (1998)
argues that SOC can only materialize in slowly driven,
interaction-dominated threshold systems. In fact, already
reasoning along similar lines, Lu (1995) argued that
the magnetic Ðeld overlying active regions meets these
requirements.

In the papers mentioned above, Lu and collaborators
have introduced what can perhaps now be called the
““ classical ÏÏ SOC lattice model for solar Ñares (see also
Vlahos et al. 1995 ; Galsgaard 1996 ; MacKinnon & Mac-
pherson 1997 ; Georgoulis & Vlahos 1998 ; Charbonneau et
al. 2001). Consider a three-dimensional regular cubic lattice,
with each lattice node labeled by three integers, Mi, j, kN.
Now deÐne on each lattice node a quantity related toB

ijkthe magnetic Ðeld.3 Enforcing B\ 0 at all boundary nodes
and starting from zero Ðeld throughout the lattice, small
perturbations dB are added in succession to randomly selec-
ted interior nodes. After each such addition, the local

3 While identifying with the magnetic Ðeld, Lu et al. (1993) alsoB
ijksuggested an interpretation in terms of a magnetic vector potential. Isliker,

Anastasiadis, & Vlahos (2000) have recently argued along similar lines and
went on to show that energy dissipation in the model can then be inter-
preted as electrical current dissipation, a physically attractive scenario in
the solar coronal context.
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““ tension ÏÏ (*B) is computed :
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where the sum runs over the six nearest neighbors on the
three-dimensional cubic lattice. Whenever this quantity
exceeds some speciÐed threshold something akin toB

c
,

reconnection is assumed to set in, and the Ðeld is locally
redistributed according to the simple rule
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with This redistribution may lead one ors \*B
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/ o*B
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o .
more of the nearest neighbor nodes to exceed the instability
threshold, in which case the above redistribution rules are
applied to the newly unstable nodes, and so on, as the
““ avalanche ÏÏ propagates through the lattice, until stability
has been restored everywhere.4 Each redistribution event
releases an amount of ““ magnetic energy ÏÏ
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A Ñare is then interpreted as the energy released collectively
through the avalanche of redistribution events. The energy
released by a single node just inÐnitesimally exceeding the
stability threshold is

E1\ 67B
c
2 , (4)

and is used below as a convenient energy unit.
Lu and collaborators went on to show that, provided a

few simple criteria are met (namely, dBÏsdB/B
c
> 1 ;

extracted from a distribution with nonzero mean ; and no
perturbations added during an avalanche, implying a
separation of timescales between the driving and the
energy-release processes ; see Lu et al. 1993 for further
discussion), this simple system settles into an SOC state,
with the frequency distribution of total and peak energy
release in avalanches characterized by power-law distribu-
tions with indices and both in gooda

E
^ 1.5 a

P
^ 1.8,

agreement with observational inferences.
The waiting-time distribution (WTD) of solar Ñares is the

distribution of time intervals *t between successive Ñares.
Observational determinations of the WTD have so far
yielded varying results, depending on the range of wait
times considered and event selection procedure adopted.
For wait times longer than a few hours, the observed WTD
is well described by a power law Bo†eta etf (*t)P (*t)~a*t.
al. (1999) Ðnd in soft X-rays, while Wheat-a*t \ 2.4 ^ 0.1
land (2000) Ðnds for the same data set buta*t \ 2.16^ 0.05
with a more restrictive selection criterion. The obser-
vational WTD is in direct conÑict with the prediction of the
lattice model described above, which yields an exponential

4 Equation (2) is the scalar equivalent of the redistribution rules used in
Lu et al. (1993), who deÐned a vector Ðeld at each lattice node. It hasB

ijksince been shown that, given the form of the driving used, the vector
character of the Ðeld has no inÑuence on the resulting statistical properties
of the SOC model (see, e.g., Robinson 1994 ; Edney, Robinson, & Chisholm
1998). Most subsequent SOC work in the solar Ñares context has thus been
carried out using a scalar quantity deÐned at each lattice node, which is
computationally less demanding. Following Vlahos et al. (1995), we
proceed here with the scalar version of the model.

WTD compatible with Poisson statistics (Wheatland, Stur-
rock, & McTiernan 1998). However, Wheatland (2000) has
shown that the observed WTD can be understood in terms
of a piecewise-constant Poisson process with an exponential
distribution of Ñaring rates. He has presented a simple illus-
trative example to support this view, based on a Bayesian
determination of the Ñaring rate from the data, and further
suggested that a nonstationary lattice model could, in prin-
ciple, reproduce the observed WTD.

In this paper, we present and discuss the statistical
properties of two lattice models, relying on a simple modiÐ-
cation of the driving mechanism used in the original formu-
lation of Lu and collaborators. Both models yield a WTD
with a power-law tail for large waiting times, and one of
them reproduces reasonably well the observationally
inferred value of the WTD power-law index in the long
wait-time regime. This is a robust result, in that the power-
law tail still materializes with approximately the same index
in the presence of noise and detection threshold.

2. A LATTICE MODEL WITH NONSTATIONARY DRIVING

The perturbations added to the lattice are more than just
the triggering mechanism for avalanches ; they are the
means through which energy is added to the lattice. The
SOC state is stationary in the sense that, on average, ava-
lanches dissipate as much energy as is added to the lattice in
between avalanches, and the mean Ðeld set up across the
lattice neither grows nor decays. Upon adding a pertur-
bation dB to lattice site MijkN, the lattice energy changes by
an amount since typi-*E\ (B

ijk
] dB)2[ B

ijk
2 ^ 2B

ijk
dB,

cally in the SOC on any reasonably sized lattice.dB> B
ijkHence, the mean rate of energy input to the system is pro-

portional to the mean of the dB distribution. However, an
SOC system can dissipate energy either in numerous small
avalanches, or in fewer larger ones. How the energy input
rate relates to the avalanching rate is not a priori obvious in
such models.

In the original model of Lu et al. (1993), the perturbations
dB added to the lattice are extracted from a sequence of
random deviates (r) uniformly distributed in the interval
[[0.2,0.8] (which implies a nonzero mean value SrT \ 0.3).
The choice then ensures that the system is beingB

c
\ 7

slowly driven, in the sense that To introducedB/B
c
> 1.

nonstationarity in the driving rate, we retain these bounds
and parameter values here but modulate the sequence of
dBÏs by a time-dependent function o(t) related to a one-
dimensional random walk function :

dB\ ro(t), r ½ [[0.2,0.8] . (5)

We consider three distinct cases for o(t), amounting to
increasing nonstationarity :

1. Case I : o(t) \ 1 is our reference case, namely, the
scalar version of the Lu et al. (1993) model. In this case the
Ñaring rate is expected to be well described by Poisson
statistics (Wheatland et al. 1998 ; Wheatland 2000).

2. Case II : o(t) is the square root of the absolute value of
the random walk function.

3. Case III : o(t) is the absolute value of the random walk
function.

In the latter two cases, the random walk step size is
chosen to be 10~2, i.e., much smaller than the mean value of
the random deviate distribution. One random walk step is
taken each time a new dB is generated. Figure 1 shows the
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FIG. 1.ÈNormalized frequency distribution of Ðeld increments dB for
representative realizations (of length 4] 106 iterations) of the three drivers
deÐned in ° 2. The vertical line segments indicate the corresponding mean
values for each case.

resulting distributions of Ðeld increments dB for representa-
tive runs of cases I, II, and III. For cases II and III, the
width of the distributions is dependent to some degree on
the random walk realization, but the distributions shown in
Figure 1 are typical.

3. RESULTS

3.1. Statistical Properties of the Nonstationary
L attice Models

Starting with throughout the lattice and enforc-B
ijk

\ 0
ing this initial value as a boundary condition at the lattice
edges, all three models are driven according to their respec-
tive o(t) until a stationary state is attained. In all cases this
state is characterized by avalanches of all sizes, with fre-
quency distributions of total energy release (E), peak energy
release (P), and duration (T ) described by power laws, a
canonical signature of SOC. All simulations are carried out
on a 323 lattice. Numerical values for the corresponding
power-law indices and are listed in the Ðrst threea

E
, a

P
, a

Trows of Table 1. Each entry is the average index obtained
from Ðfteen independent runs, each of 4 ] 106 iterations
and involving about 2] 105 avalanches. The error esti-
mates are the rms deviation about the corresponding mean
values. This ensures that the listed values are representative
of the statistical properties of our various drivers o(t). These
values also depend somewhat on the adopted lattice size,
but the results reported in Lu et al. (1993) indicate that the
power-law indices remain reasonably stable for lattice sizes
of 243 and higher (see their Table 1). For each individual
run, the three indices are obtained by a nonlinear least-

squares Ðt to a power law with an exponential rollover, as
expected from Ðnite size scaling arguments (see Lu et al.
1993, their ° 2.2 and references therein) :

f (X) \ X~aX exp ([X/X
c
) , (6)

where is a cuto† associated with the Ðnite size of theX
clattice and X stands for either E, P, or T . As can be seen

from Table 1, the frequency distributions are signiÐcantly
steeper in the nonstationary cases.

3.2. Waiting-T ime Distributions
Figure 2 summarizes results for the WTD for each of our

three cases. The top panels show the distribution of pertur-
bations dB added to the lattice over 2] 106 iterations,
together with a running mean (thick solid line). The bottom
panels show the WTDs f (*t) constructed from the corre-
sponding time series of energy release in the model. As
found earlier by Wheatland et al. (1998), case I (Fig. 2d) is
well Ðtted by an exponential distribution of waiting times,

with the net mean Ñaring ratef (*t) P exp ([j0*t), j0directly determined from the entire energy release time
series. Case II is characterized by a distribution of Ñaring
rate that is approximately exponential except at low Ñaring
rates (high *t). This suggests a comparison with the model
put forth by Wheatland (2000), who has shown that the
theoretical WTD associated with a nonstationary but
piecewise constant Poisson process with exponential dis-
tribution of rates takes the form

f (*t) \ 2j0/(1 ] j0*t)3 , (7)

where once again is the observed mean Ñaring rate. Thej0dashed line in Figure 2e is equation (7) with determinedj0from the time series. At low *t (high Ñaring rates), the agree-
ment between WheatlandÏs formula and the case II WTD is
indeed quite good.

The WTD for case III is shown in Figure 2f. Beyond
waiting times of 20 (iteration units), the WTD is well Ðtted
by a power law with index spanning overa*t \ 2.51 ^ 0.16,
2 orders of magnitude in *t. Within the error bars, this
value is in agreement with the observational inference of
Bo†eta et al. (1999), although signiÐcantly larger than the
value 2.16 ^ 0.05 reported by Wheatland (2000).

Figure 3 is a scatter plot of the mean Ñaring rate SjT (i.e.,
number of Ñares per iteration, independent of Ñare size or
duration) and mean energy release rate (mean energySEavTreleased per iteration) versus mean rate of energy injection
into the lattice for the Case III simulation (Figs. 2cSEinTand 2f). The three mean rates are computed over a 5 ] 104
iteration averaging window, excluding epochs of ava-
lanches. The large scatter notwithstanding, the mean energy
release rate is directly proportional to the mean energy
input rate, as it must be in a stationary system. This scatter

TABLE 1

POWER-LAW INDICES IN LATTICE MODELS

Case SNT/E1 a
E

a
P

a
T

a*t
I . . . . . . . . 0 1.45^ 0.01 1.70^ 0.03 1.70 ^ 0.03 Exponential
II . . . . . . . 0 1.49^ 0.04 1.74^ 0.09 1.75 ^ 0.04 3.16^ 0.13
III . . . . . . 0 1.53^ 0.03 1.80^ 0.10 1.75 ^ 0.06 2.51^ 0.16

2 1.48^ 0.03 1.70^ 0.10 1.76 ^ 0.06 2.79^ 0.16
5 1.48^ 0.03 1.72^ 0.10 1.80 ^ 0.04 2.75^ 0.13
10 1.48^ 0.03 1.73^ 0.10 1.77 ^ 0.03 2.71^ 0.20
20 1.48^ 0.03 1.73^ 0.10 1.78 ^ 0.03 2.75^ 0.18
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FIG. 2.ÈSummary of results for case I, II, and III simulations. The top panels show the distribution of perturbations dB added to the lattice, with the thick
solid line corresponding to a running mean. The bottom panels show the WTDs constructed from the corresponding time series of energy release in the
lattice after SOC has been reached. Note that the abcissa is linear for case I but logarithmic for cases II and III. The thick lines are power-law least-squares
Ðts carried out for waiting time *t º 102 (case II) and *t º 20 (case III). The dash-dotted vertical line segment indicates the mean wait time over the full time
series. The dashed lines correspond to eq. (6) of Wheatland (2000) with the mean Ñaring rate computed directly from the time series. WheatlandÏs formulaj0provides a good Ðt to the case II WTD for but not to case III. The case III WTD power-law Ðt in the long waiting-time regime has an exponent*t [ 102,
[2.51^ 0.16, in agreement within error bars with the observational inferences of Bo†eta et al. (1999), but signiÐcantly larger than the value reported by
Wheatland (2000).

FIG. 3.ÈMean Ñaring rate SjT (plus signs ; left vertical axis) and mean
energy release rate (diamonds ; right vertical axis) vs. mean energySEavTinput rate for a 4 ] 106 iteration case III simulation. The means areSEinTcomputed over time series segments of 5] 104 iterations, excluding ava-
lanches and with 50% overlap between successive segments. The dashed
line is a least-squares Ðt to a power-law relationship and yields an expo-
nent equal to 1.64. The dotted line has a slope of unity, illustrating that

is directly proportional to as it must be in a stationary state.SEavT SEinT,

does reÑect the fact that the system liberates energy in an
intermittent, bursty manner, while the energy input rate is
far more regular. On the other hand, the mean Ñaring rate
increases with mean energy input rate as a remarkably tight
power law with index 1.6 (Fig. 3, dashed line). This illus-
trates the fact that energy release in the SOC state occurs
over a wide range of avalanche sizes, so that the mean
Ñaring rate is not simply linearly proportional to the mean
energy input rate. In fact, a larger value of does favorSEinTsmaller Ñares at the expense of larger ones.

3.3. Observational T hreshold E†ects
The determination of the observed WTD for solar Ñares

is greatly complicated by the existence of a detection thresh-
old on the X-ray and/or extreme-ultraviolet Ñux, as well as
by the Ðnite spatial and temporal resolution of the obser-
vations themselves, which might cause two Ñares occurring
closely in space and/or time to register as a single ““ event.ÏÏ
In the framework of the lattice model, the situation in fact
becomes even more complicated. A large Ñare is made up of
a collection of small energy release events avalanching
through a large portion of the lattice. One can deÐne clus-
ters of potentially unstable nodes as nodes where *B would
exceed the instability threshold if any neighboring nodeB

cwere to take part in an ongoing avalanche. Such clusters
bear a strong morphological (and mathematical) resem-
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blance to clusters within a percolating lattice near the per-
colation threshold (see Stau†er & Aharony 1994 for a nice
introduction to the subject). In particular, such clusters are
fractal objects with a highly inhomogeneous spatial struc-
ture. As a consequence, an avalanche sweeping through the
cluster releases energy in a strongly Ñuctuating manner.

The histogram in Figure 4 (thin black line) shows a
portion of the energy-release time series, including a moder-
ately large avalanche. Assume now that the ““ count rate ÏÏ of
an instrument detecting this Ñare is linearly proportional to
the energy release. Following Wheatland & Edney (1999),
we now assume that a source of Poisson noise is present
(N(t), thin gray line) at an average level SNT (dotted line).
The noise is added to the original time series, and a detec-
tion threshold # is set at a level corresponding to 3 p above
the mean, i.e., # \ SNT ] 3SNT1@2 (dashed line), a common
procedure in analyzing real Ñare time series data (e.g.,
Bromund et al. 1995). The new ““ noisy ÏÏ time series isE

N
(t)

obtained by considering only counts above threshold #, i.e.,

E
N
(t)\ 4

5
6
0
0

E(t)] N(t)[ # , if E(t)] N(t)[ # ;
0 , otherwise .

(9)

Although the resulting time series bears a strong resem-
blance to the original noiseless time series, important di†er-
ences materialize at low count rates. Two small Ñares (b and
c in Fig. 4) no longer produce a signal above the threshold
and so are lost. The Ðnal decay phase of the large Ñare is
now fragmented, leading to two additional and apparently
distinct events (points d and e). Finally, in instances where
the noise does exceed the 3 p level, an entirely spurious
event can be produced in quiescent portions of the noiseless
time series (such as event a in Fig. 4).

The consequences for the event-size and waiting-time fre-
quency distributions are not immediately obvious. The
noise addition and subsequent thresholding can add (a) or
remove (b, c) small events, while the fragmentation of large
avalanches can be expected to add smaller events (d, e),

FIG. 4.ÈE†ects of noise combined with a detection threshold on the
energy release time series E(t). The thin histogram is a portion of one such
time series for a case III simulation, including a large avalanche. The thin
gray histogram is synthetic Poisson noise N(t), with mean SNT indicated
by the dotted line. Adding this noise to the original time series leads to the
thick histogram. A detection threshold is then set at # \ SNT ] 3SNT1@2.
While the overall structure of the large avalanche is preserved, the number
and temporal distribution of small amplitude events is strongly a†ected,
which in turn a†ects the frequency distributions of event size, duration, and
waiting times (see ° 3.3 and Table 1).

closely spaced in time, in a manner related to the fractal
dimension of the time series. This evidently can a†ect all
frequency distributions for the time series, including, in par-
ticular, the WTD.

The bottom four rows in Table 1 list the various power-
law indices for a series of case III runs for various values of
the assumed mean noise SNT. The E, P, and T distributions
are still power laws, but the index is now nearly 2 pa

Esmaller than the corresponding noiseless index (third row in
Table 1). This suggests that in the presence of background
noise, the power-law index inferred from observationsa

Emay be smaller than the corresponding indices character-
izing the energy release within the Ñaring volume. The
indices and are also smaller, and larger, althougha

P
a
T

a*tthe 1 p ranges overlap comfortably with those of the noise-
less case III time series.

With noise and threshold included, the WTD distribu-
tions also show small excesses of short wait times as com-
pared with the original noiseless time series, especially for
case II runs. While not compelling, this still o†ers some
support to the explanation put forth by Wheatland et al.
(1998) for the excess of short wait times seen in their sample
of hard X-ray bursts, namely, that they are due to temporal
structure within an energy release event, rather than to sym-
pathetic Ñaring involving nonlocal physical mechanisms
other than the purely local inÑuences between neighboring
Ñaring elements characterizing the lattice model.

4. DISCUSSION AND CONCLUSION

We have presented two nonstationary lattice models for
solar Ñares that each yield a power-law behavior for the
WTD at long wait times. Both models are characterized by
frequency distributions of total energy release, peak energy
release, and event duration that have the form of power
laws, with power-law indices similar to those of the original
stationary model of Lu and collaborators (our case I
above).

In the Ðrst nonstationary model (case II), the distribution
of driving perturbations is modulated by the square root of
a random walk function. The theoretical WTD computed
by Wheatland (2000) under the assumption of piecewise
constant Ñaring rates provides a good Ðt to the model WTD
except at low Ñaring rates. Our second nonstationary model
(case III) is characterized by a WTD with a well-deÐned
power-law tail at large waiting times, with the power-law
index in reasonable agreement witha*t\ 2.51^ 0.16
observational inferences. The existence of a well-deÐned
power-law tail is robust with respect to the introduction of
noise and observational threshold on the energy-release
time series from which the WTD is constructed, with only
small variations of the power-law index.

While these results are encouraging from the point of
view of lattice models for solar Ñares, one evidently needs to
justify the introduction of nonstationary energy input to the
system. Formally, no such justiÐcation exists at this writing,
but again, neither does any exist for the strictly stationary
driving used in the original lattice model of Lu et al (1993).
In fact, given the observed tendency for magnetic Ñux emer-
gence to recur on a relatively short timescale within existing
active regions (e.g., Harvey & Zwaan 1983), it may well be
that nonstationary driving is a better approximation to
reality.

At any rate, the results presented herein show that it is
relatively easy to produce lattice models that exhibit SOC
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and are characterized by a WTD with a well-deÐned power-
law tail at long wait times. We can but concur with Wheat-
land (2000) that it would be very premature at this juncture
to abandon the SOC model in favor of explanatory con-
structs relying on intermittent energy dissipation in MHD
turbulence (as put forth, e.g., by Bo†eta et al. 1999). Energy
dissipation in MHD turbulence does take place in an inter-
mittent, bursty manner, involving the buildup of dissipative
structures on a wide range of spatial scales (see, e.g., Long-
cope & Sudan 1994 ; Einaudi et al. 1996 ; Galsgaard & Nord-
lund 1996 ; Dmitruk & 1997 ; Galtier & PouquetGo� mez
1998). How this relates to magnetic energy dissipation in
Ñaring active regions is a di†erent matter. Except at times of
Ñaring and/or Ñux emergence, the magnetic Ðeld above
active regions appears to be in a more or less quiescent
state, andÈat least on observational spatial and temporal
scalesÈshows no signature of fully developed MHD turbu-

lence. Within a current sheet, however, MHD turbulence
might play an important role in the reconnection process
itself. Whether or not such turbulent e†ects can be rep-
resented by a suitably constructed SOC lattice model
remains an intriguing question (see Einaudi & Velli 1999 for
a discussion of this possibility).
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